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SUMMARY/ABSTRACT 
This report documents the development of a methodological framework for the construction, 

integration and exploitation of Political, Military, Economic, Social, Information, and 
Infrastructure (PMESII) models to infer system dynamics and provide decision support.  This 
includes results of investigations, recommendations for resolving model incompatibilities, 
methods for reasoning with heterogeneous networks of models, and a system design 
specification.  Hereafter in this report, this methodological framework will be referred to as the 
Commanders Predictive Environment Framework (CPEF).  CPEF provides for interoperability 
of PMESII models to facilitate the re-use of legacy models and sharing and dissemination of new 
models.  The prime candidate program for transitioning CPEF is the Commander’s Predictive 
Environment (CPE).  The objective of the CPE program (Carozzoni, 2005) is to build a decision 
support environment for the JFC/JFACC and staff to better understand the mission space (past, 
present & future) and predict enemy intent, actions, and emerging threats in Joint Operations.  
CPEF supports this objective by allowing users to collaborate, extend existing models, and 
reason with networks of heterogeneous models, each of which may have particular strengths in 
modeling some specific PMESII domain.  This provides for speculative (“what-if“) analysis and 
inference that helps predict enemy actions and responses in the overall social-political context of 
future military operations. 

Our primary approach for CPEF centered on graphical models, given their capability of 
providing human-centric, easy-to-understand visual representations of relationships amongst the 
models’ variables, along with specific underlying procedural interpretations for query execution 
to understand dependencies among variables.  We developed methods for building such 
graphical PMESII models, along with a methodology for wrapping existing models to facilitate 
interoperability.  The net result provides a strong foundation for an integrated development 
environment (IDE) for producing networks of interoperable PMESII models.   

The candidate PMESII graphical modeling paradigms reviewed during our investigations 
included Ptolemy models, causal graphs, concept graphs, concept maps, and semantic and neural 
networks.  These paradigms have been developed for a variety of purposes: some have been 
developed primarily for structured knowledge acquisition with minimal inferencing capabilities, 
some are mere black boxes used to study relationships between arbitrary input-output variables, 
and some offer sophisticated inferencing schemes to study complex relationships amongst their 
variables.  But each of these modeling paradigms allows some form of speculative, or what-if, 
analysis to explore the static and dynamic effects of one subset of model variables on another 
such subset, within the target application domain (along a PMESII dimension) for which the 
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model was built.  Therefore, when a network of models is built from a number of different 
PMESII models incorporating a variety of different technologies, the result is a system with 
powerful capabilities for exploring relationships among variables spanning several of the 
encompassed domains. 

Our efforts leveraged existing models and tools for various modeling paradigms, including 
our in-house tool, BNet.Builder™ for building causal graphical models, government-off-the-shelf 
(GOTS) stability and reconstruction operations models (SROM) from AFRL/RI, commercial-
off-the-shelf (COTS) tools such as VivoMind© toolset for concept graphs and CmapTools© for 
concept maps from our strategic partners, and various open source software packages for 
building neural network models and production rules.  Development of the aforementioned IDE 
itself, based on our in-house tool, GRADE™, was researched under AFRL contract FA8750-06-
C-0078, Toolkit for Building Hybrid, Multi-Resolution PMESII Models, and is documented in 
that contract’s final report.  The GRADE-based IDE was used as an enabling test-bed for the 
methodological framework developed under this effort. 
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1. Introduction 

1.1 Problem Statement 

Modern warfare has become far more complex than traditional force-on-force warfare.  Some 
causes of this complexity include:  the adversary’s increasingly skillful use of the indigenous 
population and infrastructure, coordination of global war efforts involving multiple and 
heterogeneous coalition partners (each with various political and other constraints), and the 
impact of friendly and adversary actions on, for example, the economic, political, and social 
dimensions of all countries involved, whether adversary, ally, or “interested neutral.”  There is 
thus a clear need to assist the commander in understanding the structure and dynamics of this 
complex battlespace that spans and interconnects such diverse dimensions, and that makes 
forecasting and prediction such an immensely difficult task.  It is clear that no analysis done in 
isolation along a single dimension, i.e., not taking into account the effects of the other 
dimensions, can give a full picture of the battlespace in its socio-political context.  Nonetheless, 
there are many ongoing efforts to develop and field isolated tools and models along single 
Political, Military, Economic, Social, Information, and Infrastructure (PMESII) dimensions.  
What is needed to make full use of these efforts is an effective integration and exploitation of 
these models for an in-depth and holistic understanding of the military situation within the socio-
political context.  This report presents CPEF, our methodological framework for such integration 
and exploitation.  CPEF adapts existing models to ensure interoperability, facilitates model 
integration, and supports reasoning with heterogeneous networks of models to more accurately 
capture battlespace dynamics. 

Here we report the results of our efforts in developing CPEF to support analysts integrating a 
network of interoperable PMESII models, and how we can exploit this network of models to 
explore dependencies and influences amongst selected battlespace variables.  Consider the 
process of building individual models and integrating them into a network of interoperable 
models:  it can be viewed as a joint activity between human analysts and subsystems 
implementing particular graphical modeling paradigms.  The analyst will interact with the 
appropriate subsystem to produce a model in his particular area of expertise, incorporating his 
choice of modeling paradigm.  For example, a subsystem for constructing causal graphs may be 
the best choice for representing probabilistic relationships among variables from the domain of 
terrorism and insurgency.                                                                                                                                           
The collection of PMESII models so constructed will result in an inclusive global semantic 
network containing a set of interconnected ontological terms and phrases capturing both static 
and dynamic properties of, for example, a terrorist organization of interest, including their 
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structures, associations among members, influence towards each other, cultural and behavioral 
profiles of members, and their social and economic networks.  We may then exploit this network 
in various ways, e.g., we may speculatively determine the effects of interrupting the economic 
support of the terrorists, perform situation assessments, or even predict such conditions several 
months hence. 

1.2 Objectives 

The primary objective of the CPEF effort was to develop a methodological framework for 
building networks of integrated, interoperable, and adaptive PMESII models for enhanced 
understanding of the mission space.  Specific objectives were: 

• Scenario and Scope Definition: We worked with subject matter experts to develop 
scenarios with sufficient complexity to demonstrate the basic functionalities of the CPEF 
framework.  We then defined the scope and requirements, guided by the chosen 
scenarios.  This included specifying the software and hardware requirements and the 
bounds on functionality for the prototype, specifying the range of decision support 
functionality for the commander and staff that should be supported in the prototype to 
better understand the mission space, requirements for interoperability with existing 
models, and requirements for inferencing.  We then generated a functional specification 
detailing key implementation issues. 

• PMESII Models Development: We developed a methodology for skilled/non-skilled 
analysts to rapidly build various types of graphical PMESII models capturing key 
relationships, dependencies, and vulnerabilities of adversary/self/neutrals.  Our initial 
focus was on building models in the context of the chosen scenarios using a variety of 
graphical modeling paradigms such as concept graphs, causal graphs, concept maps, 
influence diagrams, and neural networks.  We leveraged existing commercial-off-the-
shelf, in-house, and open source tools that exist for some of these modeling paradigms.  

• Reasoning with Models and Adaptation: We developed inferencing capabilities for a 
network of PMESII models to identify leverage points that represent opportunities to 
influence capabilities, perceptions, decision making, and behavior.  Inferencing was 
developed for reasoning with information flowing ‘between’ models (meta-level or inter-
model) and within models (intra-model).  The latter category of inference techniques 
includes graph matching, analogical reasoning, evidence propagation, and arc traversal to 
cover the graphical modeling paradigms.  We leveraged existing inferencing techniques 
wherever possible.  We investigated enhancing the inference techniques to include 
spatiotemporal relations among models and variables.  We also studied appropriate 
machine-learning techniques for adapting individual models over time. 

• Making Models Interoperable: We devised a methodology that enables the construction 
and integration of interoperable PMESII models.  The models were drawn from existing 
models with interface “wrapping” added for interoperability, along with models 
developed from scratch.  This task addressed the incompatibilities and gaps identified in 
Section 2.1 (and illustrated in Figure 1). 
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• Demonstration of Proof-of-Concept:  We built specific graphical models in the context 
of the battlespace scenario developed under the scenario definition task above, involving 
multiple PMESII dimensions to carry out mission specific tasks.  The model building 
process and reasoning functionality was prototyped and tested using our in-house 
GRADE-based IDE.  

• Prototype Validation and Evaluation:  We developed a validation plan and evaluated 
the limited-scope prototype.  This was done in terms of assessing its accuracy in 
identifying potential semantic relations between models to support model integration and 
ultimately reasoning with networks of heterogeneous models. 

• Transition and Final Reporting:  We identified transition opportunities and developed 
a plan to exploit the results of our CPEF work.  Results of the CPEF effort are 
summarized in this document and include recommendations for integrating and reasoning 
with PMESII models as well as a system design specification that can be used for 
implementations of a full-scope prototype.  

1.3 Report Outline 

Section 2 describes some of the key issues and challenges in developing a methodology and 
framework to support construction, integration, and reasoning with a network of heterogeneous 
PMESII models.  This includes an enumeration of potential model incompatibilities and 
functionality gaps in Section 2.1.  Section 3 presents a record of our performance in the form of a 
project task breakdown.  Section 4 provides general recommendations for a framework that 
supports PMESII model construction, adaptation, and integration.  These recommendations are 
relevant to the entire CPEF system and simultaneously apply to more than one of the 
incompatibilities and functionality gaps presented in Section 2.1.  Also included is a discussion 
of what constitutes an ontology, issues concerning the use of ontologies, and how the CPEF 
methodology and framework leverages different levels of ontology specification but is not 
restricted by a lack of ontologies.  Section 5 offers recommendations that are specific to each 
incompatibility and functionality gap presented in Section 2.1.  We provide a system design 
specification in Section 6 which describes the components and processing stages of CPEF and 
lists enabling technologies that can be used for the implementation of each component in a full-
scope prototype.  We conclude with Section 7 which discusses methods for reasoning with a 
network of heterogeneous PMESII models and the issues involved.  
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2. Key Issues and Challenges in Constructing, Adapting, and 
Integrating PMESII Models 

This section enumerates and describes issues central to constructing, adapting, and 
integrating PMESII models.  Section 5 provides recommendations for resolving each of the 
issues described in this section. 

2.1 Model Interoperability: Incompatibilities and Functionality Gaps 

There are several fundamental issues (and associated “hard” problems) that need to be 
addressed in undertaking the development of an interoperable framework of PMESII models.  
First and foremost is the problem of making existing or even new models interoperable, as these 
are developed independently, i.e. with no coordination, by different software design and 
development teams, in consultation with domain experts having various levels of skills and 
expertise.  A very common approach is to build a wrapper around an existing model, thus 
converting it to an input-output black box, or to provide an intelligent agent operating 
autonomously, which communicates with other models in the network.  But this approach is 
likely to introduce other types of gaps and incompatibilities between models, some of which are 
illustrated in Figure 1.  The major thrust of our effort was to identify an overall methodology to 
fill these gaps, including various intelligent automated techniques, processes and guidelines, and 
aid from human subject matter experts and analysts wherever needed. 

2.1.1 Interface Incompatibility 

The first problem shown in Figure 1 (in the top row) concerns interface incompatibility 
between two PMESII models that either already exist or are being developed independently.  If 
we intend to feed output from model A about a certain object X as input to model B, then some 
mismatch between the output and input may occur in terms of the assumptions about the 
numbers and types of X’s attributes.  This is often straight-forward but tedious to deal with, often 
merely involving “translation” from one descriptive framework to another, e.g., from numerical 
values - 1, 2, 3, … - to “fuzzy” values (low, medium, high, …).  A bigger problem ensues when 
different levels of resolution are used to represent the same object in two different models.  If 
model A provides a high-resolution object representation of X, e.g., a map, or enemy force 
estimates, for model B, and model B needs a low-resolution representation, e.g., lat/long 
coordinates, or enemy center of gravity, then some aggregation process must be conducted, 
usually based on one approximation method or another.  The reverse process is much more 
difficult, going from a low-resolution output to a high-resolution input, since, in effect, missing 
input attributes have to be inferred/approximated and “filled in.”  
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CPEF uses a number of approaches to resolve the interface incompatibility.  These are 
described in Section 5.1.  Recommendations are also made for more comprehensive approaches 
which can be implemented in a full-scope prototype. 

Interface
Incompatibility

Ontological 
Incompatibility

Formalism 
Incompatibility

Subdomain
Gaps

Model A

About object of 
type X

Model B

Input Output Input Output

Bel(X) p(X)

Economy Social
 

Figure 1:  Gaps and Incompatibilities Between PMESII Models 

2.1.2 Ontological Incompatibility 

The second problem illustrated in Figure 1 concerns ontological incompatibility between 
models that arises due to differing vocabularies and expressive power in their respective 
ontologies.  Different teams of engineers and subject matter experts with a diverse range of 
expertise, knowledge, and cognitive capabilities independently creating PMESII models will 
inevitably develop and use different underlying ontologies; which, in turn, will give rise to 
incompatibilities across models.  Initially, one might suggest the development of a “common 
ontology” for the set of all possible PMESII models; but many failed efforts in this direction 
make it clear that developing a universal ontological standard for model creation is impractical, 
if not theoretically impossible.  Moreover, if models are to be built rapidly, analysts should 
ideally be free to use a model-building environment of their own choosing without assistance 
from knowledge engineers, and thus the analysts should not be constrained by a predefined 
ontology to express their knowledge, which usually inhibits their expressive flow.  Hence, rather 
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than proposing to develop a common ontology for the PMESII model space, CPEF focuses on 
facilitating better mapping capabilities between differing ontologies.  For example, there are 
tools that can map ontological terms from one domain to another by solving the well-known 
synonymy and polysemy problems; these clearly offer hope for translating between differing 
ontologies used in the models.  In some cases of incompatibility between the underlying 
ontological structures of the models, e.g., semantic networks vs. logical expressions, one domain 
can be mapped to another by providing a more expressive ontological structure for one of the 
models, e.g., semantic networks can be mapped to first-order logical sentences.  Therefore, some 
parts of the ontological incompatibility problem can be addressed via automated techniques, 
which we have explored and leveraged under the CPEF effort. 

CPEF uses a number of approaches to resolve the ontological incompatibility.  These are 
described in Section 5.2.  Recommendations are also made for more comprehensive approaches 
which can be implemented in a full-scope prototype. 

2.1.3 Formalism Incompatibility 

While ontological incompatibility creates problems due to multiple ways of designating an 
entity, the formalism incompatibility shown in Figure 1 is concerned with multiple ways of 
instantiating the object entity computationally represented in the model.  For example, 
uncertainty can be expressed not only in terms of probability values, but also via various other 
formalisms such as certainty factors, the Dempster-Shafer measure of beliefs, and numerous 
other qualitative dictionaries.  These are fundamentally incompatible with each other, both in 
terms of their underlying conceptual representation of uncertainty and probabilistic reasoning, as 
well as in the sense of having different types of scales.  Conversion between two such 
formalisms often requires deep understanding of the models and their formalisms, thus breaking 
the simple input-output black box idea of encapsulation.  Specialization of formalism is often 
appropriate to map one approach to another.  For example, probability theory is a special case of 
Dempster-Shafer theory that allows beliefs to be expressed only on singleton sets, and so 
facilitates development of a mapping from probability models into Dempster-Shafer models.  

CPEF uses a number of approaches to resolve the formalism incompatibility.  These are 
described in Section 5.3.  Recommendations are also made for more comprehensive approaches 
which can be implemented in a full-scope prototype. 

2.1.4 Subdomain Gaps 

Finally, if one wants to feed the output from a model in one PMESII domain to another, it 
will require an analyst or domain expert with knowledge of both domains to bridge the 
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subdomain gaps.  This is due not only to the ontological gaps between the domains being 
considered, but also to differing dynamics between the domains.  Addressing this problem 
requires the skills of experts from the respective domains, or ideally those who are expert in both 
domains.  

CPEF facilitates experts bridging such gaps by highlighting possible correspondences 
between concepts and variables across domains.  A number of approaches are proposed to 
resolve the issue of subdomain gaps.  These are described in Section 5.4.  Recommendations are 
also made for more comprehensive approaches which can be implemented in a full-scope 
prototype. 

2.2 Reasoning with PMESII Models and Adaptation 

Automated reasoning with PMESII models helps analysts understand key relationships, 
dependencies, and vulnerabilities of adversary/self/neutrals, and identifies crucial leverage points 
that represent opportunities to influence various capabilities.  We envision three types of 
reasoning with the models: deductive, abductive, and inductive.  Deductive reasoning enables 
analysts to determine influence of one variable onto others.  For example, variables representing 
the supply of electricity from an infrastructure model influence the variable representing the 
level of anger among a population in a social model.  Conversely, abductive or explanation 
based reasoning allows analysts to determine the variables that affect, or explain, a variable of 
interest, in order of their influence.  For example, the variable representing the supply of fresh 
water may be the most influential in explaining the anger among certain sections of a population.  
Inductive reasoning finds patterns in observations and converts them to knowledge.  So if we 
repeatedly find that electrical shortages induce angry demonstrations among certain sections of a 
population, then by induction this pattern of influence becomes knowledge, and the underlying 
model can be enhanced by incorporating the newly learned pattern.  We have leveraged our in-
house expertise of various symbolic, linear and non-linear learning and pattern recognition 
techniques to implement the necessary inductive reasoning for the CPEF effort. 

While the unidirectional flow of information within a component-oriented, input-output type 
of black box model is a natural fit for deductive reasoning, it is much harder to perform 
abductive or explanation based reasoning.  This type of “backward” reasoning typically requires 
computation of influence backwards, which is especially difficult when input-output 
relationships are not easily explainable or invertible, e.g., neural networks or differential 
equations.  Infinite combinations of values of input variables that come from real-valued 
domains prevent application of a trial and error method to determine optimal explanations (as we 
cannot generally expect such functions to be invertible).  In the specific discrete case of 
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reasoning with graphs in general, we addressed this question by assessing the utility of various 
graphical model specific inferencing techniques, for example, analogical reasoning for concept 
graphs, evidence propagation for causal graphs and influence diagrams, adaptation and back 
propagation for neural network models, and graph matching techniques for semantic networks in 
general.  Because we are emphasizing graphical models, these techniques have the potential of 
solving a majority of the difficulties associated with the abductive reasoning techniques we 
considered for inclusion in CPEF. 

Adaptation of a graphical PMESII model involves changing or tuning its structure to produce 
behavior in line with past observations.  Adaptation of computational models in general is 
typically achieved via a variety of machine learning algorithms.  Changing the structure of a 
graphical model requires addition/deletion of its nodes representing concepts and associated 
links defining their relationships.  Our network/component-oriented approach to building 
interoperable models allows us to achieve adaptation of a network in terms of local adaptations 
of the individual models it contains.  For instance, we can leverage existing learning algorithms 
to adapt individual modeling paradigms.  For example, there are established learning algorithms 
for adapting or learning from scratch the structure and probabilities for a causal graph.  Similar 
algorithms exist for production rules.  For neural network models, adaptation of a network 
requires its retraining.  Semantic graphs in general require human intervention for adaptation. 

In Section 4.3.12 of this report we review the types of reasoning possible with different 
levels of ontology specification.  We also address implications for inference using networks of 
heterogeneous PMESII models in Section 7.  While a primary focus of our effort has been on 
model construction, integration, and adaptation, once these principle functionalities are provided, 
many of the issues in reasoning with models will be addressed.  For instance, the issue of how to 
reason with a Bayesian network and rules base, and specifically the problem of propagating 
evidence from a Bayesian network to a rules engine, will be addressed when the interface 
incompatibility described in Section 2.1.1 is addressed. 

2.3 Building Graphical PMESII Models 

If we view PMESII models as abstract computational representations of domain experts’ 
knowledge, then building such a model from scratch is typically a time-consuming process 
involving consultation with the appropriate domain experts.  Semantic networks provide us a 
means of reducing the effort in that process since they are an especially effective means of 
representing an analyst’s understanding of a particular domain of knowledge.  In general, there is 
no specific formal semantics for semantic network representations, that is, there is no agreed-
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upon notion of what a given representational structure means, as there is in mathematical logic or 
Bayesian networks. 

2.3.1 Semantic Networks 

Semantic networks consist of nodes and links between the nodes.  The nodes represent 
objects or concepts and the links represent relations between nodes.  The links are directed and 
labeled, and thus a semantic network is a directed graph.  In the simplest form of a semantic 
network circles or boxes usually represent the nodes and the links are drawn as arrows between 
the circles.  The network defines a set of binary relations on a set of nodes.  Now to be useful as 
a modeling tool, semantic networks must obviously facilitate processing of the information they 
contain.  The way that the information is processed is known as arc traversal.  This is used to 
identify the complex relationships between nodes. 

The following are six of the most common categories of semantic networks (Sowa, 1991): 
• Definitional networks emphasize the subtype or ‘is-a’ relation between a concept type 

and a newly defined subtype.  The resulting network supports the rule of inheritance for 
copying properties defined for a supertype to all of its subtypes.  The traditional hierarchy 
within an object-oriented framework falls into this category. 

• Assertional networks are designed to assert propositions.  Unlike definitional networks, 
the information in an assertional network is assumed to be contingently true. 

• Implicational networks use implication as the primary relation for connecting nodes. 
They may be used to represent patterns of beliefs, causality, or inferences.  Bayesian 
belief networks are implicational networks. 

• Executable networks include some mechanism, such as marker passing or attached 
procedures, which can perform inferences, pass messages, or search for patterns and 
associations.  Markov decision processes can be represented as executable networks. 

• Learning networks build or extend their representations by acquiring knowledge from 
examples.  The new knowledge may change the old network by adding and deleting 
nodes and arcs or by modifying numerical values, called weights, associated with the 
nodes and arcs.  Neural networks are examples of learning networks. 

• Hybrid networks combine two or more of the previous techniques, either in a single 
network or in separate, but closely interacting networks. 

In the CPEF effort we reviewed and evaluated a number of well-known graphical modeling 
paradigms from the above types of semantic network categories for building PMESII models 
including concept maps, concept graphs, causal graphs, influence diagrams, and neural networks.  
Each of these paradigms has its own strengths and weaknesses, thus making each suitable for 
some PMESII applications but not all.  In Table 1 we list a number of the candidate modeling 
paradigms reviewed along with a comparison of their relative strengths and weaknesses. 
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2.3.2 Candidate PMESII Modeling Paradigms 

Under the CPEF effort we constructed networks of PMESII models using a variety modeling 
formalisms including causal graphs, concept graphs, concept maps, semantic networks, neural 
networks, SRO models, and production rules. This was to determine what PMESII sub-domains 
each was most appropriate for and to facilitate scenario construction and CPEF prototype 
validation and evaluation.  Table 1 compares these modeling formalisms along a number of 
dimensions. We define these dimensions below and briefly describe each of the candidate 
modeling formalisms. 

Table 1:  Comparison of Candidate PMESII Model Formalisms 

GOTSLow
Forward

Backward
YesMediumSRO Model

COTS
Free (Research)

Low
Forward

Backward
NoMediumConcept Graph

COTS
Free (Research)

Medium
Forward

Backward
NoHighConcept Map

COTS
Open Source

LowForwardYesMediumProduction Rule

COTS
Open Source

HighForwardYesLowNeural Network

In-House
COTS

Free (Limited)
Medium

Forward
Backward

YesMediumCausal Graph

ToolsAdaptabilityReasoningExecutableExpressivityModels and 
Characteristics

GOTSLow
Forward

Backward
YesMediumSRO Model

COTS
Free (Research)

Low
Forward

Backward
NoMediumConcept Graph

COTS
Free (Research)

Medium
Forward

Backward
NoHighConcept Map

COTS
Open Source

LowForwardYesMediumProduction Rule

COTS
Open Source

HighForwardYesLowNeural Network

In-House
COTS

Free (Limited)
Medium

Forward
Backward

YesMediumCausal Graph

ToolsAdaptabilityReasoningExecutableExpressivityModels and 
Characteristics

 
Expressivity of a modeling formalism refers to its ability to capture and express an analyst’s 

knowledge in terms of the constructs the formalism offers.  The expressivity of a concept graph 
is very high as it keeps the phrases used by the analysts intact in the model.  In contrast, a neural 
network model is only able to keep the input-output relationships in the model. 

The executable characteristic of a modeling formalism refers to whether some useful 
information that is implicit in a model, e.g., degree of influence of one variable onto another, can 
be derived from the model via some kind of inferencing algorithm.  A causal graph, for example, 
is an executable formalism as it offers propagation algorithms, and so also is a trained neural 
network.  In contrast, the concept mapping model does not have such an algorithm.  But a 
graphical model will always be able to determine the importance of a variable based on the 
number of incoming/outgoing edges from the variable, or detect the influence of one variable on 
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another based on interconnections (although not necessarily quantifying the strength of the 
influence). 

Reasoning of a modeling formalism refers to the formalism’s ability to detect the direction of 
influence (not just connection) of one variable to another.  A belief network propagation 
algorithm, for example, incorporates both deductive and abductive reasoning, and thus able to 
detect both forward and backward influences along with their degrees.  On the other hand, the 
standard back propagation neural network modeling formalism is limited only to forward 
reasoning. 

Adaptability of a modeling formalism refers to automatic adjustments by models, which are 
necessary to take into account new observations.  It is hard to adjust structures of graphical 
models as they are built in consultation with subject matter experts.  But the strength of 
relationships among a set of variables within a model, e.g., probabilities in a belief network 
model or activation levels within a neural model can be adjusted based on observations without 
changing their structure. 

Tools of a modeling formalism refers to the currently available software tools implementing 
the formalism, that is, whether such a tool is in-house, COTS, GOTS, open source, or freely 
available for research/commercial purposes. 

We now briefly describe the different contemplated modeling techniques. 

2.3.2.1 Concept Maps 

Concept maps are a result of research into human learning and knowledge construction 
(Novak, 1998).  In concept maps the primary elements of knowledge are concepts, and 
relationships between concepts are propositions.  Concept maps are a graphical two-dimensional 
display of concepts (usually represented within boxes or circles), connected by directed arcs 
encoding brief relationships, e.g., linking phrases, between pairs of concepts forming 
propositions.  Each concept node is labeled with a noun, adjective or short phrase, and each edge 
is labeled with verbs or verb phrases describing the relation between the connected concepts.  
Concepts maps are highly effective in quickly capturing domain knowledge along PMESII 
dimensions. 

Concept maps are organized in a somewhat hierarchical structure, with the more general 
concepts at the top of the graph and the more specific concepts nearer the bottom.  The 
cardinality of the relationships is unrestricted; however, most relationships either connect one 
concept to another single concept, or connect one high-level concept to several more specific 
concepts.  This generally leads to diagrams with a tree-shaped structure, although this is not 
mandatory.  Figure 2 shows a typical concept map. 
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Figure 2:  Concept Map Describing Battlefield Intelligence Gathering 

In Figure 2 we see a cognitive map diagram describing the process of battlefield intelligence 
gathering.  Note that the map here is not a strict hierarchy.  The “can detect” relationship 
between the concepts “Surveillance Equipment” and “Enemy Positions” is an example of a 
crosslink, or a relationship that joins different map segments. 

Often, the process of creating a concept diagram is of equal or greater utility than the finished 
diagram itself.  As a collaborative process, concept mapping can help an interviewer elicit details 
of a complicated topic from one or more domain experts.  The interviewer starts with a focus 
question, and asks the domain experts for a list of concepts relevant to this question.  This list 
should be large enough to answer the focus question in satisfactory detail, but should be no 
larger than the number of concept nodes that will fit in a single diagram (usually no more than 40 
or 50).  The interviewer creates concept nodes to represent these concepts, using either sticky 
notes placed on a whiteboard or a software package designed for cognitive mapping.  The 
interviewer then asks the experts to group related concepts on the diagram, placing the more 
general or central concepts near the top of the diagram, and defines the relationships between the 
related concepts.  During this process it is common for the domain experts to debate the precise 
nature of the relationships between the concepts, and clarify and revise the diagram accordingly.  
Concepts may be added or removed during this phase as necessary.  Finally, the diagram is 
examined once more to make sure that all parties present are satisfied that the diagram accurately 
answers the focus question. 
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A popular tool for concept mapping is the CmapTools (Canas et al., 2004) package 
developed at the Institute for Human and Machine Cognition (IHMC) (www.ihmc.us).  The 
package is freely available for both commercial and non-commercial use, and has many 
advantages over using sticky notes or a more general diagramming tool, e.g., it can record the 
entire mapmaking process. 

2.3.2.2 Concept Graphs 

Concept graphs are a formal system of logic based on the existential graphs of C. S. Peirce 
and semantic networks.  They are mathematically precise and computationally tractable 
structures, which have a graphic representation that is humanly readable.  For this reason, 
concept graphs have been used in a variety of applications for computer linguistics, knowledge 
representation, information retrieval, and database design.  Figure  is an example concept graph 
encoding a generic behavioral model of a terrorist leader. 
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Figure 3:  Concept Graph Model for Terrorist Leader Behavior 

In concept graphs, concepts are represented by rectangles, e.g., [Person: Leader X] and 
[Behavior: Aggressive], and conceptual relations are represented by circles and ovals, e.g., 
Leads, Causes.  An analyst can query such a model to determine who the terrorist leader is and 
the nature of the leader, based on various observable intelligence.  Such a leader X, who leads 
the terrorist group A, can possess different types of behavior attributes including aggressive, 
diplomatic, quick to anger, etc.  If such a leader is quick to anger and there are some stimuli to 
make the leader angry, then an attack on friendly targets may be imminent. 

Under the CPEF effort we used the VivoMind© toolset for concept graphs from our strategic 
partner, SAIC.  VivoMind© toolset provides a modular, semantic service-oriented framework, 

http://www.ihmc.us
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called FMF, encapsulating powerful analogical reasoning capabilities based on concept graphs to 
create analogically reasoning agents.  These agents can find analogies and provide explanations 
so easy to understand, yet non-obvious:  they can discover significant new features in input 
information and ontologies automatically.  They also work to provide valuable control 
knowledge to other reasoning modules and to thereby enable agile model-building of the 
problem domain.  The tools that SAIC, Inc. has developed using the FMF approach are capable 
of highly efficient and effective ontological reasoning based on conceptual graphs.  An ontology 
constructed with these tools is then a collection of types and individuals, which forms a 
framework for the knowledge in a domain.  The collection is arranged into a hierarchy based on 
subtypes and generalization and specialization.  Every concept on the hierarchy is treated as a 
type, where there is no longer a need to distinguish instances from types.  The essential 
difference is in, for example, treating a freighter as you would any generic ship.  The type ship 
can be placed, occupy space, and have specific values for weight or direction.  The generic ship 
can have constraints placed on its attributes, and finally can be specialized into a freighter when 
enough data has been gathered to support this hypothesis. 

2.3.2.3 Causal Graphs 

A causal graph (a.k.a. belief network) (Jensen, 1996) is a graphical, probabilistic knowledge 
representation of a collection of variables describing some domain, yielding a PMESII model.  
The nodes of the network denote the variables and the links denote causal relationships between 
the variables.  The topology encodes the qualitative knowledge about the domain.  Conditional 
probability tables encode the quantitative details (strengths) of the causal relationships.  

The belief network of Figure 4 encodes some aspects of a social model (disregard the 
diamond box for now).  The top half of the network captures the influence of four variables, 
namely, power, drinking water, refined fuel, and sufficient food supply, on a variable 
representing the level of anger of the population in a town aligned with coalition forces.  The 
dynamics of the social model are that short supply in any one of these three consumable products 
will increase the level of anger among the local population.  The bottom half of the network 
encodes the effects of an angry population in terms of street protests and ambushes on the 
patrolling forces.  A probability table specifies the probability of each possible value of a child 
variable, conditioned on each possible combination of its parent variable values.  For example, 
the probability of street protests given that the anger level is high is 0.9. 
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Figure 4:  Simple Causal Model and Influence Diagram 

The chance that a node of a causal graph is in a particular state is termed its ‘belief’ in the 
state, reflecting the probability that the node is in that state given all the previous evidence 
received.  The structure of a belief network encodes other information as well.  Specifically, the 
lack of links between certain variables represents a lack of direct causal influence, that is, they 
indicate conditional independence relations.  This belief network encodes many conditional 
independence relations, for example, 

Street Protests ⊥ Ambush ⏐ Level of Anger Among Population 

Ambush ⊥ {Power, Drinking Water} ⏐ Level of Anger Among Population 

where ‘⊥’ is read ‘is independent of’ and ‘⏐’ is read ‘given.’  That is, once the level of anger 
among the population is known, the observation of street protests adds no further information 
about the likelihood of ambush.  Similar conditional independence assertions hold for the other 
variables. 

When new evidence is posted to a variable in a causal graph, that variable updates its own 
belief vector and then sends out messages indicating updated predictive and diagnostic support 
vectors to its children and parent nodes respectively.  These messages are then used by other 
nodes to update their belief vectors and to propagate their own updated support vectors.  The 
separation of evidence yields a propagation algorithm (Pearl, 1988) in which update messages 
need only be passed in one direction between any two nodes following posting of evidence.  
Thus, the algorithm’s complexity is proportional to the number of links in the network.  This 
separation also automatically prevents the possibility of double-counting evidence.  Our in house 
tool Bnet.Builder® facilitates construction and reasoning with causal graphs. 
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Influence diagrams are a specialization of causal networks, augmented with decision 
variables and utility functions to solve decision problems.  Decision trees are specialized 
influence diagrams that help to choose between options by projecting likely outcomes as utilities.  
The diamond box “Loss” in Figure  represents the expected mission utility in line with the level 
of anger.  The utility (though difficult to quantify here) should go up when the anger level is 
down and vice versa. 

2.3.2.4 SRO Models 

A Stabilization and Reconstruction Operations Model (SROM) (Robbins, Deckro, & Wiley, 
2005) analyzes the organizational hierarchy, dependencies, interdependencies, exogenous 
drivers, strengths, and weaknesses of a country’s PMESII systems to enable more efficient 
resource expenditure.  SROM models a country in a holistic manner as a national sub-model, 
which is then defined in terms of its regions as a system of systems (shown in Figure ).  Regions 
can interact with each other as well as the National Sub-Model.  Each regional sub-model itself 
contains six functional sub-models:  demographics sub-model, insurgent and coalition military 
sub-model, critical infrastructure, law enforcement, indigenous security institutions, and public 
opinion.  The utility of SROM is briefly demonstrated below, using  
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Sub-Model
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Sub-Module

 
Figure 5:  Top Level Nation SROM (Robbins et al., 2005) 

Figure  below shows a portion of the critical infrastructure model of SROM.  The model 
captures a sequence of influences among variables, starting from the power supply at an 
electrical substation.  The generated power is fed into an industrial water plant, which produces 
water consumed by oil field work.  An oil field produces crude oil to be refined by a refinery.  
Finally, refined fuel is used to generate power, which in turn is supplied to various power 
substations, thus forming a loop. 
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Figure 6:  SROM Infrastructure Model 

2.3.2.5 Neural Networks 

A neural network is a nonlinear information-processing paradigm that attempts to mimic the 
functioning of the brain in a simplistic manner.  The key element of this paradigm is the novel 
structure of the information processing system, composed of a large number of highly 
interconnected processing elements (a.k.a. neurons or nodes), arranged in multiple layers, 
working in unison to solve specific problems.  A sample neural network is shown in Figure .  
Neural networks offer some of the most versatile ways of mapping or classifying a nonlinear 
process or relationship.  Neural networks will help us to build PMESII models for those domains 
that have highly complex non-linear relationships between input and output variables.  The exact 
relationship between input and output variables in a neural network will not be transparent due 
its black box nature, but the effect on output variables for various inputs can be observed via 
forward propagation. 

 Neural networks derive power and versatility mainly through the activation functions or the 
nonlinearity associated with a node.  The inputs to a node are the available measurements or the 
scaled outputs from other nodes.  Sigmoid activation functions are most common.  Two major 
kinds of network topology are feed-forward and feedback.  In the feed-forward neural network 
structure, signals flow between the nodes only in the forward direction, i.e., from the inputs 
towards the outputs.  In a feedback or recurrent neural network, the outputs from nodes may flow 
in the reverse directions.  Feed-forward neural networks are restricted to finite-dimensional input 
and output spaces.  Recurrent neural networks can in theory process arbitrarily long strings of 
numbers or symbols, but training recurrent neural networks poses much more serious practical 
difficulties than training feed-forward neural networks.  Multilayer perceptrons and radial basis 
function networks are the two most commonly used types of feed-forward networks.  
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Figure 7:  Example Neural Network Structure 

 The weights on the nodal interconnections are estimated iteratively by a nonlinear 
optimization method.  A variety of numerical optimization methods, e.g., conjugate gradient 
method, can be used for training feed-forward neural networks.  Conventionally, a training set of 
data is used for learning or parameterization of the network; a validation set of data are used for 
optimization of the architecture and a test set of data are used for performance assessment 
(Ripley, 1996).  

In practice, neural networks are especially useful for classification and function 
approximation or mapping problems which are tolerant of some imprecision, which have lots of 
training data available, but to which hard and fast rules (such as those that might be used in an 
expert system) cannot easily be applied.  Almost any finite-dimensional vector function on a 
compact set can be approximated to arbitrary precision by feed-forward neural networks (which 
are the type most often used in practical applications), with enough data and enough computing 
resources. 

 Different variations of neural networks have been developed.  For example, a neural net can 
incorporate fuzziness or heuristics in the inputs, the outputs, or in the constraints in the nodes 
(Carpenter et al., 1996); in Self-Organizing Maps, competitive networks provide a topological 
mapping from the input space to the clusters (Kohonen, 1984).  Evolutionary Neural Networks 
derive power from the training of the neural network from evolutionary algorithms, e.g., genetic 
algorithms.    

 Neural networks have been successfully used in diverse paradigms, for example: recognition 
of speakers in communications, diagnosis of hepatitis, recovery of telecommunications from 
faulty software, interpretation of multi-meaning Chinese words, undersea mine detection, texture 
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analysis, three-dimensional object recognition, hand-written word recognition, and facial 
recognition.  

2.3.2.6 Production Rules 

A production rule (aka if-then rule) can be thought of as a simple graphical structure whose 
nodes are built from the conjunction of conditions in the antecedent of the rule, and then linked 
to another node corresponding to the consequent of the rule.  Several rules can be chained 
together by matching the consequent of one rule with a condition of the antecedent of another 
rule, thus forming a larger forward-chaining graph representing a PMESII model.  The kind of 
rules we shall be dealing with in this effort has the following general form: 

IF   Events 

THEN  Hypothesis (D) 

The above rule is interpreted as “If Events occur then Hypothesis follows with degree of 
uncertainty D”.  If D is a probability value then the rule implies that “If Events occur then the 
probability that Hypothesis will follow is D”.  Events, the antecedent of the rule, is a conjunction 
of propositional symbols each representing an event and Hypothesis, the consequent, can be a 
property symbol as in  

IF Interrupted Power Supply AND NO Gasoline in Market THEN 
Anger among Population (0.8) 

or an action symbol as in 

IF Anger among Population THEN Keep QRF Stand By (0.8) 

There are COTS and open source tools on the market for both deductive and abductive 
reasoning with production rules.  For example, CLIPS is an open source free tool and ILOG is 
commercially available.  Moreover, our in-house tool GRADE includes a built-in rule 
component.  There are also established techniques for extracting rules from past observations, 
such as Inductive Logic Programming. 

2.3.3 Model Interoperability 

Figure  provides an example illustration of the interactions among three “layered” PMESII 
models:  social, infrastructure, and information models respectively from top to bottom. 

The infrastructure model in the middle, represented as a Stabilization and Reconstruction 
Operations Model (SRO Model) (Robbins et al., 2005), captures a sequence of influences among 
variables, starting from the power supply at an electrical power substation.  The generated power 
is fed into an industrial water plant, which produces water consumed by oil field work.  An oil 
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field produces crude oil to be refined by a refinery.  Finally, refined fuel is used to generate 
power, which in turn is supplied to various power substations, thus forming a loop.  It is 
especially difficult to reason with graphs containing such loops spanning many variables, as it 
creates an additional burden for discounting the variables’ self-influence. 

The social model at the top of the figure captures the influence of four variables, namely, 
power, drinking water, refined fuel, and sufficient food supply, on a variable representing the 
level of anger of the population in a town aligned with coalition forces.  The dynamics of the 
social model are that short supply in any one of these three consumable products will increase 
the level of anger among the local population.  In fact, if a terrorist organization became aware of 
the mid-layer SRO model sequence in the infrastructure then the power substation would assume 
heightened importance in the eyes of the terrorist strategists: attack on a substation would not 
only cripple other services along the sequence but would also drive the sentiment of the local 
population against the coalition.  Note that the diamond box represents the expected mission 
utility in line with the level of anger.  The utility (though difficult to quantify here) should go up 
when the anger level is down and vice versa. 
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Figure 8:  Interoperability of PMESII Models 
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The behavioral information model at the bottom of Figure 8 encodes a generic behavioral 
model of a terrorist leader in terms of a concept graph in which concepts are represented by 
rectangles, e.g., [Person: Leader X] and [Behavior: Aggressive], and conceptual relations are 
represented by circles and ovals, e.g., Leads, Causes.  An analyst can query such a model to 
determine who the terrorist leader is, and the nature of the leader based on various observable 
intelligence.  Such a leader X, who leads the terrorist group A, can possess different types of 
behavior attributes including aggressive, diplomatic, quick to anger, etc.  If the leader is quick to 
anger and there are some stimuli to make the leader angry then an attack on friendly targets may 
be imminent.  One such stimulus would be coalition forces stopping the supply of oil to the 
region, as indicated by the link between the SRO Model and the Concept Graph Model. 

A key issue here, of course, is the interoperability among the models.  Note that although an 
input/output connection has been made between the two variables Oil Refinery and Refined Fuel 
of the top two models, they are ontologically incompatible as defined earlier.  However, they can 
be made compatible, by recognizing that the term Oil is synonymous to Fuel, and Refined and 
Refinery have a common base word.  Another difficult compatibility problem is illustrated by the 
fact that there is no input for the variable Sufficient Food Supply in the social model, illustrating 
the interface incompatibility described in Section 2.1.1.  One can envision, however, that this 
“sufficiency” concept could be automatically computed from the supply of food previously 
recorded in available databases, to bridge this last gap.  

A number of recommendations for resolving specific model incompatibilities and 
functionality gaps are provided in Section 5.  More general recommendations that can resolve 
more than one of these gaps simultaneously are presented in Section 4. 

2.4 Implementation and Evaluation via GRADE 

We implemented and evaluated CPEF using our in-house IDE GRADE (Harper et al., 2003).  
GRADE provides an XSLT translator for mapping inputs and outputs between models and a GUI 
for graphically integrating models by mapping their components to one another.  GRADE was 
developed to enable rapid development of intelligent agents from existing components.  For our 
purposes, a GRADE agent is a network of PMESII models and the components used to build an 
agent are PMESII models.  Viewing a network of PMESII models as an agent is quite 
advantageous in situations where the system is required to run autonomously. 

GRADE was developed to enable rapid development of intelligent agents without imposing 
the restrictive learning curve often associated with agent development.  Ease of use has therefore 
been a top priority in our development of the toolkit.  An agent in GRADE consists of the 
definition of a number of connected components describing the “mental model” that the human 
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operator maintains throughout development.  The mental model is instantiated as a feed-forward 
network defining both task interdependency and data flow through the model.  GRADE is 
developed around this feed-forward network, providing the modeler with specific interfaces to 
add network components and fully define the functionality of those components. 

GRADE has an intuitive graphical interface allowing the user to define the mental model 
topology and drill down into the individual components to fully define the underlying cognitive 
processing models.  The main window frame of Figure  provides the base interface for the agent 
model.  The user can add components and define data flow between components of the agent 
model within this interface.  On the left side of the interface is a palette from which the user can 
select new components to add to the network.  This palette is populated at runtime by GRADE 
by adding all components to it that are installed in the component directory.  The user adds new 
modules by selecting a particular node from the palette, and dragging the node into the drawing 
area.  Once there, the user can specify the name of the component and configure it for runtime, 
e.g., define rules, create belief networks, etc.  This will fully instantiate GRADE’s data model for 
the node.  Data links are specified between nodes by selecting the Connection Tool from the 
palette and drawing a line between the sending node and the receiving node. 

PMESII 
Models

 
Figure 9:  Building Networks of PMESII Models in GRADE IDE 
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The AgentComponent interface of GRADE defines the interaction between GRADE and each 
component editor that it uses.  GRADE can be used to construct, edit and save any component 
that implements the AgentComponent interface.  Once a component has been added to an agent, 
it can be configured by double-clicking its icon to access the component’s own configuration 
GUI.  GRADE displays the menubar and toolbar that are appropriate to that type of component.  
This allows the user full access to each of the agent’s components, and also allows future third 
party components to be used within GRADE.  GRADE’s graph-based agent construction 
environment is enabled through the use of the JLoox toolkit 
(http://www.ilog.com/products/jloox/). 

GRADE components communicate via XML messages.  Our system design allows each 
component to employ different messaging formats defined by an XML schema, thereby allowing 
our current components, future components, and third-party components to communicate with 
one another.  This framework provides an excellent integration point for the CPEF framework as 
integrating models can be seen as mapping their inputs and outputs so as to allow XML 
messages to be passed between them.  In addition, models are typically stored in XML format. 

To this end, we developed a graphical XSLT generator for GRADE.  This tool allows agent 
developers to automatically define transformations between message formats through the use of 
a simple drag-and-drop interface.  Figure  shows the XSLT Generator Dialog.  Each 
communications link acts to connect a source component, which produces output messages, with 
an observer component that receives those messages.  The left side of this dialog shows the 
format of messages sent out by the source component.  In this case, the source component is an 
instance of our Bayesian Network Component.  The right side of the dialog shows the format of 
the messages that may be received by the observer component.  In this case, the observer is an 
instance of our Logic Component.   

http://www.ilog.com/products/jloox


 24 

 
Figure 10:  GRADE XSLT Generator Dialog 

The agent developer may select elements and attributes of the source message and drop them 
onto the observer message.  This functionality is shown in Figure  by the purple node-name 
attribute of the Bayesian Network Component.  On the right panel, the node-name attribute is 
partially visible as it is being dropped onto an attribute of the Logic Component.  We are 
continuing to work on this dialog so that a drag-and-drop action completed by the agent 
developer will result in GRADE automatically defining an XSLT instruction.  This mechanism 
will allow the agent developer to define mappings between source and observer message formats 
by simply dragging and dropping between the left and right panels of the dialog.  The new 
capabilities for easy drag-and-drop agent construction, easily accessible component 
configuration interfaces, and automated XSLT generation have greatly reduced the costs 
associated with model development.  

GRADE includes three core components:  fuzzy logic, Bayesian network, and rule base.  The 
Fuzzy Logic component uses a proprietary Java-based fuzzy inferencing engine.  It provides a 
full array of membership functions to define variable fuzzification as well as implication and 
connection methods for executing the fuzzy rules.  The Bayesian Network component is based 
on Charles River Analytic’s commercially available Bnet.Builder and Bnet.EngineKit tools.  
These provide the ability to design belief networks with a rich GUI and execute them quickly.  
Our component software wraps the functionality provided by the Bnet product.  The Rule Base 
component is based on a proprietary forward chaining rule base system that we developed in 
Java for the component.  We developed the graphical rule definition environment with a 



 25 

freeware library called Jazz, which has since been superseded by Piccolo 
(http://www.cs.umd.edu/hcil/piccolo/). 

2.4.1 Relevance to CPE 

The prime candidate program for transitioning CPEF is the Commander’s Predictive 
Environment (CPE).  The objective of the CPE program (Carozzoni, 2005) is to build a decision 
support environment for the JFC/JFACC and staff to better understand the mission space (past, 
present & future) and predict enemy intent, actions, and emerging threats in Joint Operations.  
CPEF supports this objective by allowing users to collaborate, extend existing models, and 
reason with networks of heterogeneous models, each of which may have particular strengths in 
modeling some specific PMESII domain.  This provides for speculative “what-if“ analysis and 
inference that helps predict enemy actions and responses in the overall social-political context of 
future military operations. 

Our approach to the development of a methodological framework for building networks of 
integrated, interoperable, and adaptive PMESII models effectively responds to the CPE’s need 
for enabling technologies that support: 

• Rapid PMESII Model Development:  CPEF facilitates skilled/non-skilled analysts 
rapidly building various types of graphical PMESII models to capture key relationships, 
dependencies, and vulnerabilities of adversary/self/neutrals.  

• Rapid PMESII Model Adaptation:  CPEF guides analysts in adapting existing PMESII 
models by identifying the input and output variables within a model and providing 
appropriate wrappers to expose those variables.  

• PMESII Model Integration/Interoperability:  Our approach integrates adapted 
PMESII models into networks of models and ensures their interoperability by addressing 
various types of gaps discussed earlier. 

• Maintenance of PMESII Models:  Our approach provides maintenance of adapted 
models by incorporating both static and temporal adaptation of existing PMESII models 
via machine-learning techniques and human refinements. 

(Carozzoni, 2005) projects the CPE effort as a multi-disciplinary research.  We describe 
below the disciplines that have been considered by Carozzoni and how CPEF fits into each: 

• Model Self/Adversaries/Neutrals:  The focus of CPEF is allowing users to build models 
and making them interoperable.  Such models will capture the relationships among 
various friendly, adversarial, and neutral entities.  Careful modeling and what-if analyses 
on these models will reveal strengths, capabilities, vulnerabilities and critical gaps. 

• Predict and Assess Probable/Multiple Courses of Action (COAs):  Some models will 
inevitably incorporate the notions of utility and thus whether a Red, Blue, or Grey COA 
is probable or not can be determined based on its expected utility. 

• Sensemaking Capability for Dynamic Battlefields:  This aspect is essentially about 
situation assessment and understanding of the mission at hand.  Numerous models exist 
that provide the situation assessment functionality. CPEF allows for the integration of 

http://www.cs.umd.edu/hcil/piccolo
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multiple relevant models to expedite this process and also account for the fact that 
different modal formalisms will be applicable to different PMESII subdomains. 

• Knowledge Bases to Support Center of Gravity Analysis:  Knowledge bases within 
our framework are essentially networks of graphical models.  Appropriate analyses on 
such interoperable models can generate the “center of gravity” in terms of network nodes 
that are highly sensitive in terms of system dynamics. 

• Operational Simulations for Mission Rehearsal:  The CPEF framework naturally 
allows multiple what-if analyses to carry out such operational simulations, with review of 
the results as provided by the constituent models. 

• Visualization:  The CPEF implementation platform GRADE has built-in capabilities for 
visualizing mission space, risks, uncertainty, and progress against objectives. 
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3. Project Task Performance and Results 
In this section we present the tasks undertaken to fulfill the project objectives outlined in 

Section 1.2.  This represents a record of the work performed during the CPEF research effort as 
well as a summary of the results that informed the recommendations in Sections 4, 5, 6, and 7.  
The project task schedule is shown in Figure .  The remaining subsections are a breakdown of 
each task. 
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Figure 11:  Project Task Schedule 

3.1 Scenario and Scope Definition 

As a result of discussions during the kickoff meeting and initial presentation, it was decided 
to constrain the focus of the effort around the application of developed technology to a concrete 
scenario.  Candidate scenarios discussed were a North Korea/China scenario and the Iraq 
stability scenario.  The Charles River team was asked to consider work already underway at 
AFRL/RI under the supervision of John Salerno building a system-dynamics model using the 
Ptolemy tool from the University of Berkeley.  We received a sample core system-dynamics 
model, developed using Ptolemy, from AFRL/RI, and subsequently downloaded and installed 
Ptolemy from Berkeley.  We then ran several demo examples that came with the software.  Most 
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of the examples were at a lower level (number crunching and signal processing) than we 
envisioned dealing with for the CPE.  Ptolemy provides various modeling paradigms (FSM, 
SDF, CI are some relevant ones) for concurrent execution of interoperable models.  The basic 
framework is actor oriented as opposed to object oriented.  From this point of view, there were 
no required paradigm shifts associated with mixing and matching Ptolemy models with those 
from our agent-oriented GRADE system.  Our initial experience with Ptolemy is reported in the 
following section. 

We carried out a survey of existing PMESII models including the work of Capt. J.D. 
Robbins. We also found the ISSM site, 
(http://home.comcast.net/~dshartley3/TOOLBOX/issm.htm), among others.  It seems that the 
owner of the site has integrated some PMESII models (in Excel spreadsheet form) and embedded 
them into DMSO's OOTW toolbox.  The basis of his work is a 1999 CCRP publication entitled 
“Doing Windows: Non-Traditional Military Responses to Complex Emergencies” by Hayes and 
Sands .  The book also mentions PMESII works from SAIC and EBR in the late 1990's using 
causal/influence network models.  Much of this work subsequently contributed to DARPA's IBC 
program. 

We narrowed the context down to a concrete scenario - the Iraq stability scenario.  We also 
revised the Ptolemy model developed by AFRL/RI for use in CPEF implementation and 
evaluation.  

To flesh out the domain of PMESII specification within the scenario and scope of CPEF we 
investigated the Effects-based Operation (EBO) ontologies created for AFRL/RI by ISX 
Corporation.  They were captured using the Web Ontology Language (OWL).  Adapting these 
files to Ptolemy or other formalisms has proven difficult.  However, these ontologies did provide 
a great deal of context for the scope of CPEF.  Our initial assessment was that we can develop an 
ontology actor in Ptolemy to facilitate interoperability among models. 

 

3.2 PMESII Models Development 

We were able to create a Ptolemy actor using the Ptolemy Java API, and then added it to the 
Ptolemy User Library to be used via drag-and-drop.  As shown in Figure 12, the small actor that 
we created takes a Recruit as an input, e.g., the output Recruit values from the core system-
dynamics model from AFRL, feeds this into a simple belief network model consisting of four 
variables:  Recruit, Trainee, Active Duty, and Unemployed; and then outputs the posterior 
probability distribution of the Active Duty levels.  The actor is then appended to AFRL’s model, 
as a demonstration of processing their outputs. 

http://home.comcast.net/~dshartley3/TOOLBOX/issm.htm
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Figure 12:  High-Level Core System Dynamics Model in Ptolemy 

There are several conclusions that we can draw from this small effort, which will have an 
impact on the whole CPE program;  AFRL’s vision of building the core system-dynamics model 
in Ptolemy does not conflict with the proposed CPEF methodology; we can hook up our 
GRADE-based agents as Ptolemy actors, as we did in our simple scenario above, around the 
system-dynamics model; and therefore Ptolemy is a prime candidate for integration with 
GRADE.  At this point Grade does not support SROM, Concept Graphs, and Concept Maps. 

The clocked, time-synchronized processing activities in Ptolemy can enrich the entire 
interoperable modeling framework.  We can easily envision various temporal PMESII models, 
e.g., Hidden Markov Model (HMM) and Dynamic Bayesian Network (DBN) that work in sync 
around the core system-dynamics model.  The part that we liked most about Ptolemy is its drill-
down visualization of embedded sub-models, which is an effective way to keep a large 
hierarchical type model manageable. 

We have investigated how to incorporate ISX’s ontology.   An ontology-based translation 
process can be the job of a GRADE actor with knowledge of various ontologies. 

We continued working with AFRL to revise their Iraq stability model.  We integrated their 
Health Model, shown in Figure 2 and built with Ptolemy, with our Bayesian Network (BN) 
based Political Influence Model shown in Figure , developed using GRADE.  
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The Political Influence Bayesian network model (PIM) integrates daily health data from the 
AFRL/RI Health Model (RLHM) and calculates from that data: economic, civil unrest, service 
interruption, and morale factors.  The variables for day 0 are “health0”, “econ0”, “unrest0”, 
“services0”, and “morale0” respectively.  The daily morale factor will be used to predict a 
political influence coefficient whose day 0 variable is “mutable0”.  The variables for day 1 to 5 
are named accordingly.  This model need not be a completely representative calculation, but 
served as a proof of concept mechanism for model integration.  The PIM model developed is a 
dynamic Bayesian network and provides data for six days of activity. 
 

 

Figure 2:  AFRL/RI Health Model Version 1 
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Figure 14:  Political Influence BN Developed Using GRADE 

Revisions of the AFRL Iraq stability model were ongoing.  The next iteration of the health 
model is shown in Figure 3.  The interactions between the variables of the health model shown in 
Figure 3 and the BNet model shown within in GRADE in Figure 4, are precisely defined in a 
Condition Probability Table.  For example, variable “econ1” depends on “health0” and “econ0.”  
Because there are two possible states (good and bad) for both inputs there are four values to be 
defined for “econ1’s” good state and bad state.  The values are specified as percentages.  The 
following are the values used in this model for “econ1”: 

econ0: good; health0: good => econ1: 100% good 

econ0: good; health0: bad => econ1: 95% good 

econ0: bad; health0: good => econ1: 20% good 

econ0: bad; health0: bad => econ1: 0% good 

The variables for day 1 to 5 are named similarly to day 0.                                              This 
model need not be a completely representative calculation, but is a proof of concept mechanism 
for model integration. The PIM model developed is a dynamic Bayesian network and provides 
data for six days of activity. 
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Figure 3:  AFRL Health Model Version 2 

 
Figure 4:  The Political Influence within GRADE 
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3.3 Reasoning with Models and Adaptation 

ISX Corporation made the EBO core ontologies available to CPE contractors as part of the 
CPE program.  This set of ontologies captures a representation of nodal (in the EBO sense of the 
term) interdependencies and vulnerabilities, along with the actions that exploit those 
vulnerabilities, and also how changes are induced directly via action flow.  The fundamental 
relationship patterns in the node ontology are replicated at all levels of specificity.  We studied 
the ontologies in detail to determine how they can be used within a framework for ontological 
inference.  Such inference can be used not only for model integration but also for reasoning with 
networks of heterogeneous models.  Our initial assessment is that we can develop an ontology 
actor in GRADE to facilitate interoperability among models. 

We reviewed the Effects-based Operation (EBO) ontologies from ISX Corporation for 
applicability to our effort.  The ontologies are captured using the Web Ontology Language 
(OWL).  Ptolemy uses a different dialect of XML and adapting these two formats is one of the 
issues we identified in Task 4 that needs to be addressed. 

Stanford University has a tool called Protégé for working with OWL files.  We downloaded 
Protégé and the OWLViz plug-in to display ISX’s CPE ontologies.  Figure  shows a visualization 
of the EBO ontology using Protégé.  

 

 

Figure 17:  Visualizing ISX’s Model with Protégé and the OWLViz Plug-in 
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As was discussed in the proposal, adaptation between models may have to occur at several 
levels: interface, ontological, formalism, and sub-domain incompatibility.  Clearly not all models 
will be incompatible at all levels.  However, in order to use the ISX model with a Ptolemy model 
it needs to be integrated at the interface level.  One possible approach considered is a Java 
adapter component based on the toolset available from the Source Forge Jena Project 
(jena.sourceforge.org).  It provides a Java API for processing OWL ontologies.  An alternative 
would be to use XSLT.  We analyzed the applicability of these options. 

This task included a review of formal ontology specification languages. OWL-DL is based 
on a SHIQ Description Logic and is in fact equivalent to the SHOIN(Dn) DL.  SHIQ and 
SHOIN(Dn) are common DL descriptions for which features an attributive DL language allows—
one letter per feature set, e.g., I is the set of “inverse properties”.  OWL-DL benefits from years 
of DL research and has well defined semantics.  Its formal properties are well understood.  
Known reasoning algorithms exist, and highly optimized systems have been implemented around 
OWL-DL. 

An OWL-DL ontology is known in DL terminology as a Knowledge Base.  It has two parts:  
the Terminological Box (TBox) and the Assertion Box (ABox).  The TBox contains axioms 
about classes - OWL axioms such as subclass, equivalent class, or disjointness axioms.  The 
ABox contains assertions about “individuals” - OWL facts such as type, property-value, equality, 
or inequality assertions.  Reasoners operate on Knowledge Bases. 

We reviewed a number of enabling technologies for using ontologies to reason about models.  
Pellet is an open-source reasoner that works with OWL-DL.  It accepts the SPARQL protocol 
and RDF query language (SPARQL) and provides a Java API to make it easy to integrate into 
custom systems.  According to the literature, Pellet is a complete and capable reasoner with very 
good performance, extensive middleware, and a number of unique features. 

We designed a functional process where the XSLT Generator drives a Pellet reasoner.  It was 
to be written in Java using the Jena toolkit API (http://jena.sourceforge.net/).  The generator was 
to create an XSLT translation which 1) accepts the output of the Ptolemy model, and 2) converts 
it to an acceptable input for the Bayesian Network.  The XSLT Generator was to configure the 
Pellet reasoner to analyze the two models, send SPARQL requests to the Generator, read the 
results, generate XSLT, and save the XSLT generated. 

An Xalan translator was reviewed to process the XSLT generated from the Pelet reasoner.  
Xalan would read the first model’s XML output and convert it to XML to be read by the second 
model.  We planed that the CPE Framework will add XML adapters to any models which do not 
generate or accept XML natively. 

http://jena.sourceforge.net
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SPARQL, mentioned previously, is a query language.  From the W3C (http://www.w3.org/) 
draft:  

“The SPARQL query language consists of the syntax and semantics for asking and 
answering queries against RDF graphs. SPARQL contains capabilities for querying by triple 
patterns, conjunctions, disjunctions, and optional patterns.” 

We researched how to connect two models with respect both to their data and to their 
semantics.  The key difficulty in connecting the models is understanding what the data they 
process represents.  At this point we encountered and documented the utility of metadata within 
the CPEF framework and how CPEF might use varying levels of metadata specification since we 
can not rely on users or other frameworks to provide this specification.  In all designs, our 
approach was geared towards supporting users, but still requiring them in the process of model 
integration.  

We revised the larger CPEF framework to incorporate the GRADE/Sample application, 
Ptolemy and BNet.  In the new design, the analyst will first select the models he wishes to 
integrate.  The models will then be read into GRADE which parses the XML descriptions of 
each.  Next the output and input identifiers are parsed by the CPE Framework.  It checks the 
identifiers for the substring matches and for the longest alphabetic string contained in each to be 
used as a token.  The input tokens and output tokens are then checked against an 
ontology/taxonomy description to determine if they are related using the Jena toolkit API written 
for Java (http://jena.sourceforge.net/).  The CPE Framework stores this information for use 
below.  We also envisioned the use of WordNet as a key taxonomy resource, but other 
taxonomies/ontologies were also to be investigated.  We show in Figure 5 a simple OWL syntax 
example we used to relate health to death. 

When the analyst connects the two models on-screen using GRADE, a Communication 
Configuration pane is displayed identifying the available outputs and inputs.  Selecting an output 
checks the available inputs for related identifiers using the information stored in the previous 
step and highlights them for the analyst.  This provides a visual filter to aide in selecting the 
correct input. 

http://www.w3.org
http://jena.sourceforge.net
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Figure 5:  OWL Description of Health and Death Relation 

We further investigated the implications of reasoning within a network of integrated, 
heterogeneous models.  Recommendations based on our findings are provided in Section 7. 

3.4 Making Models Interoperable 

One of the first ideas considered in this effort was the use of Concept Maps to define the 
relationships between parts of different models.  The Institute for Human and Machine Cognition 
(IHMC) has an application, CmapsTools, which provides a convenient mechanism to capture 
Concept Maps. We downloaded their product and analyzed its usefulness for the purposes of 
CPEF.  One attractive feature is that it provides exporting of Concept Maps to XML.  Our hope 
was that this would provide a means to define the interoperation of disparate models.  Figure 19 
shows an example. 
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Figure 19:  Using Concept Maps to Relate Synonyms from Two PMESII Models 

Concept Maps are able to define many types of relationships such as: synonym (A is-the-
same-as B), near-synonym (A is-similar-to B), antonym (A is-the-opposite-of B), proportional 
influence (A increases B), etc.  The power of the tool is the flexibility of what it can describe.  
Unfortunately the tool does not provide any limits either, so there is a risk that non-domain 
specific relationships could add noise to the definitions if care is not taken.  This is one of the 
aspects of this approach that ultimately led to us not incorporated it within GRADE or using it 
for further development of CPEF.  However, it remains a candidate that could be analyzed for 
use in a full-scale CPEF system. 

We were able to leverage other in-house works-in-progress to integrate Ptolemy models into 
Bayesian belief networks.  Two network fragments were constructed.  The first describes the 
dynamics of the number of police officers and the second describes the dynamics of the number 
of criminals.  The fragments are linked: the number of police officers influences the number of 
criminals, and both influence the number of unemployed. 

Both fragments are dynamic Bayesian networks.  They are designed in three layers.  The first 
layer represents the fraction of the population in different categories at the previous point in time.  
Each such variable is denoted by the name of the category and Minus, e.g. IncarceratedMinus.  
The second layer consists of transient variables that represent the fraction of the population 
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changing categories.  The third layer contains variables representing the fraction of the 
population in each category at the current point in time.   

 

 
Figure 6:  The Dynamics of the Number of Police Officers 

Each variable in the second layer is defined to be a percentage of a category variable at the 
previous point in time.  For example, the fraction of people released from jail is a percentage of 
the number of people incarcerated at the previous point in time.  It is defined by the formula: 

Released = N (0.1 IncarceratedMinus, 0.0004). 

This indicates that Released is a Gaussian distributed random variable whose mean is 0.1 
IncarceratedMinus and whose variance is 0.0004. 

These intermediate variables are useful because they characterize exactly how the fraction of 
people in each category evolves.  In addition, they serve to tie the rate of evolution of different 
categories.  For example, people who drop out of the police force are subtracted from the number 
of police and added to the unemployed. 

There is an exception to this pattern.  Sometimes the level of one category influences how 
many people will enter or leave another category.  For example, the amount of police influences 
what fraction of criminals becomes incarcerated.  Modeling this properly would require non-
linearity, because we would take a fraction of the previous level of criminals and multiply it by 
the level of police.  But the framework only allows linear Gaussian distributions.  So we have 
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modeled the situation by saying that the level of police has an additive effect on the number of 
people becoming incarcerated.  That is: 

NewlyIncarcerated = N (0.1 CriminalsMinus + 0.2 PoliceMinus, 0.0004). 

Variables in the third level integrate the changes in the second level.  The fraction of the 
population in a category begins with the fraction at the previous time point, and adds or subtracts 
the fraction of people entering or leaving the category.  For example, we have: 

Incarcerated = IncarceratedMinus + NewlyIncarcerated – Released. 

There is no noise in these variables; they are simply summations. 

Sometimes the people leaving one category may be split up into more than one new category.  
For example, some people released from jail may become criminals again, while others go back 
to joining the general population.  We have modeled this by adding only 0.6 times Released to 
Criminals. 

 
Figure 21:  The Dynamics of the Number of Criminals 

The variables in the first layer are inputs into the model.  No probability model is defined for 
them.  In reality, they will depend on the levels at time t-2 by the same mechanism shown here.  
This will go back to time 0.  To complete the model, a probability distribution needs to be 
specified over the levels at time 0.  This is an ordinary Bayesian network. 
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Note that there are probability models for Unemployed in both fragments.  In a full model 
that combines the different fragments, there will only be one Unemployed variable that is 
outside all the fragments.  The model for this variable will be the summation of the different 
models described in the different fragments. 

Further research proved that OWL could provide a more comprehensive and relevant syntax 
to define the relationships needed for our project.  OWL was therefore investigated further and 
ConceptMaps were left for later investigation, given time.  Additionally, there is an ontology 
library that has been built in the public domain provided by the DAML Project.  We decided to 
look further into how that resource could be used as a starting point for our reasoning and 
interoperability efforts. 

We extended our CPEF design for the purposes of PMESII model interoperability.  The CPE 
Framework operates as part of the GRADE Communication Configuration pane.  Once the 
models are loaded into GRADE, model integration is performed in six steps: 

1) The models are identified and the Configuration pane is instantiated,  
2) The models’ XML is parsed to generate a list of identifiers,  
3) These identifiers are further parsed to generate a list of tokens,  
4) These tokens are used, in output/input pairs to generate a list of potential relation 

matches,  
5) Once the Analyst selects an output identifier from the list of possible outputs, CPEF 

highlights the inputs which matched it, and  
6) After selecting the desired input, GRADE generates an XSLT translation for the 

connection.  

Figure  shows identifiers of the Ptolemy, B Net, and EBO/OWL models which have been 
parsed.  JDOM was used to parse the first two models; direct Pellet calls were used to parse the 
OWL.  DOM node names are parsed and node attributes with the value “name”.  To parse the 
OWL, a Pellet Reasoner instance is created for the OWL model and its getClass() method is 
invoked with a URI, e.g., http://127.0.0.1:8080/onts/ispan/health.owl#Health. 

http://127.0.0.1:8080/onts/ispan/health.owl#Health
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Figure 22:  XML Model and OWL Ontology Parsing 

3.5 Demonstration of Proof of Concept 

We initiated work on the proof of concept demonstration to target the scenarios developed 
and models built by AFRL.  A demo was coded to demonstrate the integration of the health 
model developed with John Salerno and the economic model developed in-house.  GRADE was 
used to read in the two models, CPEF identified related inputs utilizing Semantic Web 
technologies, and the user was presented with recommendations for model component mapping.  
Figure  shows the initial prototype used for proof of concept demonstration.  

OWL 

Mod
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Figure 23:  Using Semantic Web Technology to Highlight Related Inputs  

Figure 4 shows the final limited-scope prototype.  It included further support for semantic 
analysis including an interface to WordNet and Roget’s Thesaurus.  It also has a clear and 
extensible API for constructing custom dictionaries.  For example, one could include a dictionary 
of common PMESII terms and their relations to one another.  This would help in integrating 
models when comparing the semantic similarities of their structure, text labels, and any other text 
meta-data specification.  It is important to notes that this semantic analysis goes much deeper 
than simply see if words are synonyms.  It includes a number of word relations including 
antonyms, hypernyms, hyponyms, etc.  Thus, a structural analysis of two models and how they 
may integrate can be performed via a semantic analysis by looking at the text labels of their 
nodes. 

3.6 Prototype Validation and Evaluation 

The actual metrics and evaluation of the limited-scope CPEF prototype is described in 
Section 3.6.3.  We defined a number of metrics for future evaluation along the lines of a user 
study as described in Section 3.6.1.  The approaches, designs, and recommendations that have 
been researched and defined during this contract can only be completely evaluated with non-
experimental PMESII models, experienced analysts as test subjects, and a full-scope prototype 
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implementation.  The metrics described here can therefore serve as recommendations for future 
evaluation of a full-scope CPEF and / or related systems. 

For an evaluation baseline or ground truth we recommend the use of the current state of 
model development.  Models acquired during this project have been created in both Ptolemy and 
BNet.  Our ground truth will therefore consist of how analysts currently use these tools to create 
models, deduce how models should interact, manually connect models, and then reason with 
integrated models.  Evaluation should then be based on a comparison of how well users perform 
these tasks with and without the supports of CPEF.  The models used for evaluation can be based 
on those created during Task 3, AFRL Health Model (RLHM), and any other relevant PMESII 
models. 

3.6.1 Evaluation Metrics 

Metrics for evaluating CPEF fall into two categories:  1) those that evaluate its algorithms 
accuracy, and 2) a user study that evaluates its efficacy and utility.  Some simple tests that fall 
into the first category are described in Section 3.6.3.  Metrics that can be used in a future user 
study to quantify ease of model integration with and without CPEF supports are:  
• GOMS analysis:  This is a simple yet effective measurement of the number of mouse clicks, 

keyboard strokes, and other interface interactions necessary to perform model integration.  
The goal would be for CPEF to require less interaction than current manual model 
integration.  

• How quickly a user joins models:  This can be measured by users integrating similar models 
with and without CPEF supports and measuring the time differential in each case. 

•  How accurately a user joins models:  Accuracy can be subjective, thus we must try to choose 
model structures that reduce ambiguity but do not trivialize the problem of model integration.  
Accuracy measurements will then depend on how well causal and logical structures of 
individual models are retained for reasoning in integrated models.  Accuracy measurements 
will be compared for models that have been integrated with and without CPEF supports. 

3.6.2 Evaluation Experiment 

We have designed a user study for future evaluation of the CPEF system.  Users will be 
presented with a set of models within the GRADE interface and asked to connect them for 
interoperability.  In some sessions, the GRADE interface will include recommendations made by 
the CPEF system.  In other sessions it will not.  A GOMS analysis will be performed for each 
session, i.e., the number of interface interactions, e.g., mouse clicks and keyboard strokes, the 
user must make to integrate models will be counted.  The duration of each session will also be 
measured.  The GOMS analysis of each session will be compared to determine whether the 
CPEF supports require less, more, or the same number of interface interactions as manually 
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connecting PMESII models in GRADE.  The desirable outcome would be for the CPEF supports 
to reduce the number of interactions necessary, and the time required to connect models.  This 
would indicate an increase in the speed and productivity of the user. 

A second experiment could aim to measure the cognitive support provided by CPEF.  Models 
will be pre-constructed to contain certain system dynamics, and to interact with each other in a 
particular manner when integrated accurately.  The models will contain only single integration 
points, i.e., there will be only one way to accurately connect the models for inter-operation.  
Users will then be asked to connect and reason with the models, with and without CPEF 
supports.  They will also be asked to record their observations.  This will be a within-subjects 
experiment, i.e., what sets of models are given to users with and without CPEF supports will be 
interleaved to rule out learning and bias.  Measurements will then be made according to whether 
users accurately connected models with more, less, or the same accuracy when using CPEF 
supports vs. without.  Observations of users will also be analyzed to see if they were able to 
make insights about the known system dynamics with or without CPEF supports. 

3.6.3 Evaluation of the Limited-scope CPEF prototype 

The actual evaluation of CPEF centered on assessing the accuracy of our integration of 
semantic web technologies to support users integrating PMESII models.  Figure  shows the 
CPEF prototype displaying a semantic analysis of the PMESII model node “feedback”.  The 
semantic analysis is performed using WordNet and Roget’s Thesaurus but can incorporate other 
ontologies and lexical databases as described in Section 6.  The semantic analysis of the 
“feedback” node is shown in the bottom frame of Figure .  The evaluation consisted of 
comparing the prototype’s semantic analysis output to the output of a manual analysis via the 
WordNet online interface shown in Figure .  Indeed, one can see that the analysis presented in 
the lower frame of our prototype in Figure  is identical to the output of WordNet shown in Figure  
for the word “feedback.” 
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Figure 24:  CPEF Prototype Displaying Semantic Analysis of PMESII Model 

 

 
Figure 25:  WordNet Web Interface Showing Semantic Analysis of “Feedback” 
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3.7 Transition and Final Reporting 

We have compiled the observations and results of the CPEF effort and document them within 
this report.  This includes an outline of our performance during this effort as outlined in this 
section, recommendations for the construction, adaptation, and integration of PMESII models, a 
system design for a full-scope CPEF prototype, and a methodology for reasoning with networks 
of heterogeneous yet integrated models.  We have also investigated use of the methodology and 
algorithms developed under this effort in our commercial products GRADE and BNet.  
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4. System-wide Recommendations for PMESII Model Integration 
The recommendations in this section represent approaches that can be used to address 

multiple interoperability gaps as described in Section 0.  Recommendations that are specific to 
each interoperability gap are presented in Section 5.  Sections 4 and 5 are highly related and 
cross-reference each other; however, we have separated them here for clarity of scope.  

4.1 Mixed Initiative Learning 

CPEF and related systems can learn mappings between PMESII model types from user 
interaction.  The advantage of this approach is that it does not require elaborate logics or 
algorithms; it simply stores the history of user actions and attempts to predict future actions 
based on that history. Consider a user adding the metadata tag “entails” to a directed edge 
between nodes A and B on a rule-based PMESII model.  CPEF may store this information and 
suggest the metadata tag “entails” in the future when the user is again constructing a rules-based 
PMESII model.  Such suggestions are not limited to metadata entry, but can also include 
mappings between models of different formalisms.  In fact, such an approach can learn from 
every interface manipulation that the user produces, during any phase of model construction or 
use.  There is obviously a threshold for such mixed initiative approaches, and the user should be 
able to view, evaluate, edit, accept, or reject CPEF suggestions.  The high level idea however is 
that CPEF can simply observe user interactions, learn from repeated use cases, and make 
informed suggestions for meta-data tagging and model integration.  These suggestions would 
improve over time as the system learns from repetitive use cases.  

4.2 Collaborative Learning / Filtering 

A similar approach to mixed initiative learning is collaborative filtering.  The primary 
difference between the two is that with collaborative filtering, interactions from multiple users 
are aggregated to predict the future actions of individual users and produce better suggestions for 
model integration.  Because of differences in analysts’ conceptions of PMESII models, it is not 
clear how affective this approach would be. 

4.3 Ontologies: XML Files, XML Schemas, Metadata, and Inference 

We can not expect or depend on the specification of PMESII ontologies for model 
integration.  Nor do we wish to constrain users by requiring such a specification.  However, we 
can put structures in place to facilitate both the specification of metadata, and the automatic 
derivation of ontologies where possible, to support model integration through ontological 



 48 

inference.  The motivation for using ontologies is discussed in Section 4.3.1 while issues and 
complications of their use are described in Section 4.3.1. 

As part of this discussion we must define what constitutes an ontology.  At the highest level 
(and its philosophical roots), an ontology is a categorization of entities and the relationships 
between them (Gruber, 1993).  An XML file or schema that defines a PMESII model or set of 
models can therefore be considered an ontology.  This is discussed further in Sections 4.3.4 and 
4.3.5.  Users with the expertise and impetus can also specify formal ontologies as described in 
Section 4.3.5.  Sections 4.3.7, 4.3.8, and 4.3.9 present methodologies for generating ontologies 
using different levels of user specification, including none at all. 

CPEF is designed to use ontologies in support of PMESII model integration and reasoning 
with networks of heterogeneous models.  Section 4.3.10 describes the traditional use of 
ontologies while Section 4.3.11 describes how CPEF departs from this convention.  Finally, 
Section 4.3.12 provides an overview of the inference techniques that ontologies make possible, 
which are the central motivation for using ontologies in CPEF. 

4.3.1 What can Ontologies Encode? 

An ontology can ultimately encode all information necessary to connect two or more PMESII 
models and bridge all incompatibilities and functionality gaps outlined in Section 2.1.  More 
specifically, ontologies can encode the following elements of a PMESII network: 

• Nodes and the edges between them, thus the structure of the network 

• Meta-data descriptions of the functions of nodes, edges, networks and sub-networks 

• Data type restrictions on nodes and edges 

• Information on model/network data flow, computation, and aggregation of values  

• A taxonomy of formalisms and instructions on how to translate from one to another 

• Explicit instructions for data translation from one network to another 

• Explicit instructions on how to structurally connect models (e.g. one sub-network in 
one model to one node in another) 

4.3.2 Why Use Ontologies? 

A users’ motivations for using ontologies and the functionality they provide are:  

• Easier model construction: 

o Models can be re-instantiated rather than constructed from scratch 
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o Users can construct models with predefined model components and templates 
instead of specifying all necessary information from scratch 

o Better graphical user interface support - ontologies and models templates and 
components can be shown as a pallet of model widgets which can be dragged 
into place to form a model  

o All of the data specified for a model as summarized in Section 4.3.1 can be re-
used and shared 

• Easier model sharing 

o Models can be translated using XSLT for storage and sharing 

o Models can be translated from one format to another 

• Easier Model integration 

o Models can be modified as the resolution, purpose, and scope of modeling 
changes, e.g., users can append model A by adding a sub-network already 
defined in model B 

o To examine higher level system dynamics, two or more models can be 
integrated more easily 

• Little to no change in current practice: 

o To motivate the use of ontologies we try and make them unobtrusive so that 
no extra work is required.  Users can thus include as little or as much meta-
information as desired – although it will always be the case that more 
specification yields better results in model integration. 

o Little to no specification can be used (see Section 4.3.4 for using XML files as 
ontologies) 

o Ontologies can be learned from a database of models 

o Ontologies can be evolved by extending existing PMESII models when 
building new ones 

o Users can explicitly specify points of integration and how models should be 
mapped 

System-level motivations for using ontologies is their ability to support integration of 
PMESII models, and also their support for reasoning with heterogeneous networks of PMESII 
models to determine high level system dynamics.  There are two primary aspects of ontologies 
that support CPEF: 
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• Ontological Inference:  Ontologies support several forms of inference (see Section 
4.3.12) that can be used for performing model integration and reasoning with 
heterogeneous networks of models.  Even partial specifications of ontologies, 
including XML files, can be used in reasoning algorithms to determine the best 
mapping between elements, inputs, and outputs of two or more PMESII models for 
integration 

• Knowledge Representation:  with ontologies, users can directly specify how 
elements of their PMESII model should be mapped to other models or other 
formalisms, e.g., Ptolemy, BNets, Influence Diagrams, Concept Graphs, etc.  They 
can also provide an unlimited amount of meta-data that describes the function of 
nodes, edges, sub-networks, and networks. 

In the case where only node and edge labels are provided for partial specification is available, 
we can reason about the following items for model integration: 

• The number of incoming and outgoing edges to an element 

• The child / parent relationships of nodes 

• What paths can be traveled from one element to another 

• The semantic meaning of the label for a node or edge 

Reasoning about most of these items can be performed as graph traversals, however some, 
such as a semantic analysis of the label on a node or edge can not.  Ontological inference is also 
a superset of other inference mechanisms such as graph comparison.  Ontological inference can 
potentially be used to address every model interoperability gap described in Section 2.1: 

• Interface Incompatibility:  Ontologies can specify how outputs of certain model 
nodes or elements should be mapped to the inputs of another.  Typically, XSLT will 
be used for the purpose of translation and XML schemas will describe the data types 
of the elements, inputs, and outputs.  In this scenario, the XML schema itself is the 
ontology. 

• Ontological Incompatibility:  Ontologies can provide metadata describing the 
function of their components.  This metadata can then be used to translate from one 
ontological framework to another. 

• Formalism Incompatibility:  Users can explicitly specify how a model should be 
implemented across formalisms with an ontology.  Further, a taxonomy can be 
derived to provide defaults. For instance, it can be determined that when integrating a 
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Bayesian network with a neural network that a “true” output of a Bayesian node 
should map to a “fire” input of a neural network node. 

• Subdomain Gaps:  Ontologies can be extended to cover broad domains.  If two 
models cover very different domains, then an ontology can be derived that covers 
both and namespaces used to disambiguate any redundancy.  The relationships 
between these domains and their models can then be specified to facilitate model 
building, adaptation, and integration. 

The rule of thumb is that the more metadata specification in an ontology, the stronger its 
faculty of inference.  If ontologies are fully specified and used in model creation as described in 
Section 4.3.8, then most interoperability gaps can be easily solved.  This is because users can 
explicitly specify how one model should be mapped to another.  A system like CPEF would 
simply load this information and execute the ontology as a set of instructions during model 
integration.  

4.3.3 Ontology Issues and Complications 

4.3.3.1 Who Specifies the Ontology? 

Ontologies must be specified, therefore we must first determine how this is to be 
accomplished.  Within CPEF we do not want to constrain users by requiring them to specify 
ontologies, nor do we expect users to obey such constraints.  In addition, different users will 
have different conceptions and ontology specifications, sometimes for the same PMESII model.  
Standards can be developed, however they must evolve as the battlespace and PMESII models 
change.  Simple issues of concurrent model specification can invalidate such standards, i.e., 2 
analysts specifying the same model at the same time but using different ontology elements for 
specification.  

We recommend that solutions should not require ontology specification, but support it where 
possible.  Inference can be performed on data structures such as XML files of varying levels of 
specification which we can consider ontologies as described in Section 4.3.4.  More meta-data 
means more sophisticated approaches can be leveraged; however, we can not assume or require 
that users specify meta-data.  CPEF puts ontology management in the hands of users rather than 
programmers, but allows them to enter as much or as little metadata as they are able and willing.  
Some of its methods utilize ontological inference given only the state in PMESII models and / or 
their XML schemas.  We recommend a number of techniques that utilize ontological inference 
but account for variable amounts of metadata.  These include relation mapping presented in 
Section 5.2.3 and model node aggregation presented in Section 5.2.4.  Ultimately, however, it 
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would be desirable to have complete ontologies.  Sections 4.1 and 4.3.8 suggest two methods for 
deriving such ontologies without requiring users to author a monolithic, static, and therefore 
brittle ontology such as Cyc. 

4.3.3.2 One Master Ontology or Several Associated Ontologies? 

It is anticipated that any attempt to author a complete PMESII ontology that encompasses 
every possible model will invariably fail.  This is primarily because it is impossible to accurately 
predict every potential structure and/or use for a PMESII model.  Systems such as Cyc, which 
tried to codify all “common sense” knowledge, typically result in extremely complex and brittle 
sets of rules that are incomplete and do not cover every possible situation.  To avoid these issues, 
we do not recommend that CPEF use one master ontology.  Tim Berners-Lee discussing the 
State of the Semantic Web in IEEE Intelligent Systems speaks of using “folksonomies,” loosely 
federated small local ontologies, as opposed to the “Ontology of Everything” approach of Cyc, 
citing the need for solutions that scale well.  We recommend similar approaches as described in 
Sections 4.3.7, 4.3.8, and 4.3.9.   

4.3.3.3 Limits of Inference and Understanding 

Efforts in natural language processing (NPL) to date have been unsuccessful in using 
ontologies for understanding human language.  It is important to note that CPEF does not use 
ontologies for this purpose.  CPEF uses ontologies to perform inference on PMESII models to 
support their integration and interoperation.  It can use XML files and schemas and the state 
information in PMESII models for ontological inference.  Simply put, if one can represent 
models for file persistence, e.g. XML, then one can represent them with ontologies.  If one can 
represent models with ontologies, then one can use the set of ontological inference techniques to 
manipulate and reason about them.  

4.3.4 XML File as Ontology 

CPEF can use an XML file as an ontology to perform inference in support of model 
integration.  Information that can be used in comparing two elements of XML files for matching 
and subsequent integration includes: 

• The number of outgoing edges  

• The labels on nodes and edges 

• The depth 

• Parent, sibling, and other node relationships 

• The number and values of attributes on nodes 
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• The data type of the values specified for nodes 

For instance, nodes α of model A and µ of model B may be matched because they both have 
5 child nodes and a “grandparent” node with similar labels.  This information would be clearly 
represented in the XML files that stored these models on disc.  The more metadata that is 
specified, the more powerful the inference that can be performed.  To further our example, if 
both nodes had a “description” attribute and text that was semantically similar (this can be 
determined through semantic analysis as described in Section 5.2.2), then we could match these 
nodes with an even greater degree of certainty.  All of this can be accomplished through the 
minimal specification available in the XML file persistence of a PMESII model. 

4.3.5 XML Schema as Ontology 

XML schemas are XML files that specify constraints on the structure, elements, and data 
types of elements to be used in a set of XML files.  For instance, a schema may specify that any 
conforming XML files must have an element “economy” which takes on a “complex value” with 
a value cardinality of three.  The three values could be “good”, “moderate”, and “bad.” XML 
Schemas can be considered to specify the set of XML documents that conform to their 
constraints.  An XML file that conforms to an XML schema can be called an “instance” of that 
schema.  

In many ways, XML schemas provide greater support for ontological inference by providing 
more detailed specification.  Information that can be used in comparing elements of XML 
Schemas for matching and subsequent integration includes: 

• The data types of values that elements can take on  

• The cardinality of values that elements can take on 

• Explicit specifications of how data types from one element can be mapped to the data 
types of another 

• Metadata specifying  

4.3.6 Formal Ontology Languages 

Users who have the impetus and expertise can specify PMESII models in formal Description 
Logic syntax such as RDF and OWL.  OWL-DL is based on a SHIQ Description Logic and is in 
fact equivalent to the SHOIN(Dn) DL.  OWL-DL benefits from years of DL research and has 
well defined semantics.  An OWL-DL ontology is known in DL terminology as a Knowledge 
Base. It has two parts: the Terminological Box (TBox) and the Assertion Box (ABox).  The 
TBox contains axioms about classes - OWL axioms such as subclass, equivalent class, or 
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disjointness axioms.  The ABox contains assertions about “individuals” - OWL facts such as 
type, property-value, equality, or inequality assertions.  There are several implementations of 
reasoners that perform inference on Knowledge Bases. 

Figure  shows identifiers of the Ptolemy, BNet, and EBO/OWL models which have been 
parsed using JDOM for XML and Pellet for OWL.  DOM node names are parsed and node 
attributes with the value “name”.  To parse the OWL, a Pellet Reasoner instance is created for 
the OWL model and its getClass() method invoked with the URI 
“http://127.0.0.1:8080/onts/ispan/health.owl#Health”. 

 

 
Figure 26:  Parsing Model and Ontology Specification 

4.3.7 Automated Tagging, XML Schema generation, and Ontology Learning 

Dr. Fernando Gomez has used syntactic and semantic analysis for automated annotation of 
text documents (http://www.cs.ucf.edu/~gomez/).  This and similar approaches can be used to 

http://127.0.0.1:8080/onts/ispan/health.owl#Health%E2%80%9D
http://www.cs.ucf.edu/~gomez
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derive ontologies from the labels, descriptions, and structures of PMESII models.  More 
specifically, ontologies and XML schemas can be derived from XML files used for PMESII 
model file persistence.  Further, XML schemas can be derived for a set of XML files.  Given a 
set of PMESII model XML files, an algorithm for deriving an XML schema would operate in the 
following steps:   

1. Cluster the XML files into classes based on similarity in structure and content 

2. Start an empty XML schema for each class 

3. For each class and for each document in that class: 

a. Examine the data types of each element in the document 

b. If the schema doesn’t currently represent that element, add such an element to 
the schema 

c. If the schema doesn’t currently represent the data type of the element, and the 
data type does not conflict with any existing data types specified for that 
element, then add that data type specification to the element in the schema 

d. If the document contains an element that can not be represented in the schema 
given the constraints of prior steps, then create a new schema and class and 
add the document to it 

This process can be executed on any collection of XML documents.  The least amount of 
information in an XML schema and / or ontology generated from such an algorithm would be the 
data types, possible values, and structures of particular classes of PMESII models.  In some 
cases, labels and descriptive text for some models may be similar. This text could be used to 
further specify metadata within resulting ontologies. 

4.3.8 Ontology Evolution: Building New PMESII Models by Using and Extending 
Existing Models 

Ontological evolution is a simple approach to building new models that addresses all of the 
interoperability issues described in Section 2.1. The premise is that every model built by a user / 
community should extend a base ontology such that it evolves over time.  For instance, the core 
PMESII base model, schema, and ontology could declares the elements:  “Political”, “Military”, 
“Economic”, “Social”, “Infrastructure”, and “Information.”  A schema named 
“PMESII_Schema.xsl” which defines such a model and ontology is shown in the upper right 
frame of Figure 7.  Any new models can easily extend this schema and ontology by importing it 
using the declared namespace. A user who wishes to investigate the Economy sub-domain can 
simply create a new schema by importing and extending the base PMESII model schema.  The 
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Economy schema shown in Figure 8 does exactly that.  Notice its line starting with the keyword 
“include” and highlighted in the figure.  The “include” keyword imports all of the entities and 
relation definitions specified in the referenced target schema, which in this case is 
“PMESII_Schema.xsd”.  Every new PMESII model and schema that a user builds could follow 
such a process.  The end result would be an evolving ontology that captures all models built.  

It is very important to note that users would not need to know XML, nor would all models 
correspond to an XML schema.  Users can easily be presented with a pallet in the GRADE IDE 
for selecting components when building a new PMESII model.  The XML file and schema 
creation can then be done automatically in the background in response to user selections.  
Essentially users would be using components from previously built PMESII models when 
constructing new models.  Any time they created a new component, this would then be added to 
the repository of available components. 

One possible issue resulting from such a scheme is that users will create redundant 
components and models.  A simple resolution is the use of namespaces to disambiguate between 
models. Each user or community could have their own namespace. 

 
Figure 7:  Base PMESII Schema 
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Figure 8:  Economy Schema Extends Base PMESII Schema 

Users could provide any level of specification.  Some users may drill down and even specify 
the type of formalisms that can be used with a model as an attribute on XML elements.  A 
taxonomy of formalisms can also be specified so that the ontology is abstracted away from 
model formalisms.  More specifically, users can use the same nodes for two different models, 
even though their edges correspond to different formalisms, e.g., rules systems vs. Bayesian 
networks.  For instance, some entities/nodes may have an attribute “formalism” that selects what 
formalisms may be associated with a particular model, e.g., Bayes net, neural net, Ptolemy 
model. 

4.3.8.1 The Benefit of an Evolved Ontology 

The benefit of an evolved ontology is that it provides standardization without placing 
impractical constraints on the user.  Models can be more easily integrated since the definitions 
and mappings between all possible nodes and edges in all possible models is defined (and 
deducible using basic logic) within the core ontological library.  Communities could also publish 
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their ontologies for inter-community collaboration.  This would essentially create a Semantic 
Web of model ontologies (Holi & Hyvönen, 2004).  

4.3.9 Federated Ontologies 

A federated ontology is similar to the notion of an evolving ontology but has less structure 
since parts of it may be independently generated by different analysts who may or may not share 
components or extend a base ontology.  A federated ontology could consist of any number of 
XML files, XML schemas, fully specified formal ontologies, and any other metadata the user 
chooses to provide.  XML namespaces would again be used to disambiguate entities, attributes, 
and the relations between them.  The more consistency, i.e., two models referring to the same 
type of entity in the same manner, within such a federation, the more powerful and accurate 
ontological inference can be.  However, by allowing for inconsistency and redundancy, we 
provide the most flexibility and backward compatibility when working with different PMESII 
models.  

4.3.10 Traditional Use of Ontologies 

Ontologies have traditionally been used for knowledge representation in projects such as Cyc 
(Lenat & Guha, 1990) which attempts to codify all common sense knowledge.  The theory is that 
we can perform inference using logic to find all consequents of anything specified in an 
ontology.  For example, in the case of Cyc, we may want a computer to understand that “Judy 
came home” also means that “Judy is not in her car.”  For our purposes of model integration, we 
may want to infer that the edges of an Argumentation Network (Das, 2005) can map to multiple 
nodes of a Bayesian Belief Network (BBN) and a conditional probability table (CPT) that 
captures the same dynamic.   

4.3.11 CPEF’s Use of Ontologies 

CPEF uses ontologies to perform inference on PMESII models to support their integration 
and interoperation.  More specifically, CPEF uses ontologies to parse PMESII models, identify 
similarities between models, and determine how models can be connected based on the 
definitions of their entities, the links between entities, the overall structure of the model, and the 
potential values of all components.  It can use XML files and schemas and the state information 
in PMESII models for ontological inference.  Many of its methods could be termed as graph 
comparisons, thus ontologies are not intrinsically necessary.  However, because XML files are 
typically used for PMESII model file persistence, and because these files can be used as 
ontologies, it is a natural extension to use ontological inference for this purpose. 
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Some of the ontology data that CPEF would leverage in integrating PMESII models is 
described in Sections 4.3.4 and 4.3.5.  The next section describes the types of inference possible 
with ontologies.  Section 6 provides a thorough description of where ontologies fit into the CPEF 
architecture along with how they are used in the processing stages of CPEF. 

4.3.12 Ontological Inference 

For ontological inference within CPEF we investigated the use of OWL and a number of 
reasoners such as Jena.  OWL is an ontology specification language and is described in Section 
3.4.  Jena’s Transitive Reasoner provides support for storing and traversing class and property 
lattices.  This implements the transitive and symmetric properties of rdfs:subPropertyOf and 
rdfs:subClassOf.  The reasoner is a hardwired Java implementation that stores the class and 
property lattices as graph structures.  It is slightly higher performance, and somewhat more space 
efficient than the alternative of using a pure rule engines to perform transitive closure.  Its main 
advantage is that it implements the direct/minimal version of those relations as well as the 
transitively closed version.  The GenericRuleReasoner can optionally use an instance of the 
transitive reasoner for handling these two properties.  This is the approach used in its default 
RDFS reasoner. Jena may also use Pellet, an open-source OWL-DL reasoner, as a plug-in.  It is 
based on the tableaux algorithms developed for expressive Descriptive Logics.  It accepts the 
SPARQL protocol and RDF query language (SPARQL) and provides a Java API to make it easy 
to integrate into custom systems.  

Figure 29 and Figure 9 show ontology class constructors and axioms that can be used in 
CPEF.  Both can be used to answer user queries and determine the relations between PMESII 
model nodes and edges.  Queries may be on assertions or terminology.  This implies that if we 
want to determine if “death” is related to “health” we may include each value in the collection of 
assertions, e.g., we could assert “death is a subproperty of health”.  In OWL it would be written: 

     <owl:ObjectProperty rdf:ID=“death”> 

          <rdfs:subPropertyOf rdf:resource=“#health”/> 

     </owl:ObjectProperty> 

Or alternatively as part of the terminology using subclassing, “death is a subclass of health”: 

     <owl:Class rdf:about=“#Death”> 

          <rdfs:subClassOf rdf:resource=“#health”/> 

     </owl:Class> 
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Constructor DL Syntax Example 

intersectionOf C1 ⊓ … ⊓ Cn Human ⊓ Male 

unionOf C1 ⊔ … ⊔ Cn Doctor ⊔ Lawyer 

complementOf ¬C  ¬Male 

one of {x2 … xn} {john, mary} 

toClass ∀P.C  ∀hasChild.Doctor 

hasClass ∃P.C  ∃hasChild.Lawyer 

hasValue ∃P.{x}  ∃citizenOf.{USA} 

minCardinalityQ ≥nP.C  ≥2hasChild.Lawyer 

maxCardinalityQ ≤nP.C  ≤1hasChild.Male 

cardinalityQ =n P.C  =1 hasParent.Female 

Figure 29:  DAML+OIL Class Constructors 

 

 Axiom DL Syntax Example 

subClassOf C1 ⊑ C2 Human ⊑ Animal ⊓ Biped 
sameClassAs C1 ≡ C2 Man ≡ Human ⊓ Male 
subPropertyOf P1 ⊑ P2 hasDaughter ⊑ hasChild 
samePropertyAs P1 ≡ P2 cost ≡ price 
disjointWith C1 ⊑ ¬C2 Male ⊑ ¬Female 
sameIndividualAs {x1} ≡ {x2} {President_Bush} ≡ {G_W_Bush} 
dierentIndividualFrom {x1} ⊑ ¬{x2} {john} ⊑ ¬{peter} 
inverseOf P1 ≡ P2

− hasChild ≡ hasParent− 
transitiveProperty P+ ⊑ P ancestor+ ⊑ ancestor 
uniqueProperty ⊤ ⊑ ≤1P ⊤ ⊑ ≤1hasMother 
unambiguousProperty ⊤ ⊑ ≤1P− ⊤ ⊑ ≤1isMotherOf− 

Figure 9:  DAML+OIL Axioms 
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5. Recommendations for Resolving Gaps in Model Interoperability 
This section presents our approaches and recommendations for maintaining, adapting, and 

integrating PMESII Models in the context of the interoperability gaps defined above in Section 0 
and below in Table .  

Table 2:  Gaps and Incompatibilities 

Type Definition 

Interface 

Mismatch between the data types 
of different models or outputs of 
one model and inputs of another, 
e.g., Real number vs. Boolean. 

Ontological 
Different relationship structures, 
naming schemes, etc. in 
ontologies for different models 

Formalism 
Different logic and inferencing 
mechanisms and procedures for 
different models 

Subdomain Gaps 

Differing domains and dynamics 
between PMESII model 
dimensions, e.g., economic vs. 
social 

 

5.1 Interface Incompatibility 

Interface incompatibility generally refers to two or more models having different types of 
data for their inputs and outputs and thus not being able to interoperate without some form of 
data conversion.  There are at least three types of interface incompatibilities:  

1. I/O Format Incompatibilities:  string vs. binary, real vs. integer, fixed vs. floating point, 
numeric vs. Boolean, incompatible scale, incompatible zero-point, date/time format, color 
format  

2. Logical Incompatibilities:  number of I/O points, e.g., 3 outputs vs. 4 inputs—RGB to 
CMYK is a trivial example, I/O timing, e.g., fast output vs. slow input 
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3. Model Persistance Format Incompatibilities: XML vs. YAML, OWL vs. RDF.  

To address these issues, CPEF features an interface for encoding common translations that 
address each of these incompatibilities.  CPEF will provide a basic set of translation functions 
that can learn from user interaction over time.  Users can also specify these translation functions 
within an ontology or the XML schema of a model.  Such specifications could be derived from 
an evolved, global ontology as described in Sections 4.1 and 4.3.8.  A full-scope CPEF would 
feature a GUI for users to explicitly modify, add, and remove interface translation functions.  A 
number of potential translation functions are described below in the context of what type of 
incompatibilities they address. 

5.1.1 I/O Format Incompatibilities 

It is predicted that most interface incompatibilities will fall within this category, and that 
most solutions will be resolved by some combination of the following: 
• Normalization:  mapping any value to lie between 0 and 1 relative to its minimum and 

maximum possible values 
• Weighting:  scaling a value, typically in relation to other values 
• Fuzzification:  randomly generating a number to lie within some constraining interval, e.g., 

some random number between .3 and .6 
• Discretization:  “binning” values according to their range and a range they must fall within – 

somewhat like rounding - sometimes taking their distribution into account, e.g., .5 within a 
range between 0 and 1 can be discretized to 1 for a range of only 0 or 1 

XML schemas will typically exist for any PMESII model for the purpose of file persistence.  
These schemas define the elements of a model along with the possible values they can take on.  
XSLT can then be used along with a number of standard translation functions for integrating two 
models’ inputs and outputs on relevant nodes and/or edges. 

A base set translation functions will be included in the CPEF framework.  The full-scope 
CPEF will feature a GUI that allows users to add, remove, and modify these functions.  These 
functions can also adapt according to user interaction over time.  The base set of functions will 
address most common data types, i.e., SQL data types.  Some examples follow: 

5.1.1.1 Number Type A to Number Type B, i.e., where A and B are one of: Real, 
Double, Integer, Float, Byte 

Number type A will be normalized to fall within the range of B or discretized if necessary, 
i.e., if the range or resolution of A is greater than that of B.  Context specified within the model 
schema or ontology will be utilized where possible. 
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5.1.1.2 Real to Boolean 

The real will be normalized, weighted, and then discretized to true or false.  Consider a 
neural network node “raining” that takes on values in the range 0.0 to 1.0 and has a threshold 
weight of -.3.  It is already normalized, so we can now weight any value of the node by its 
threshold before mapping to a Boolean.  For the node to “fire,” i.e., activate other nodes, its 
value must be >=.8, i.e., it must exceed the weighting threshold.  We would therefore map any 
values for the node that are <8 to false, and all others to true where firing correlates with a 
Boolean value of true. 

5.1.1.3 Boolean to Real 

Values will be fuzzified or randomized to fall within the range of the Real.  For a Boolean 
value of true, we will generate a random number in the upper half of the range for the Real.  For 
a Boolean value of false, we will generate a random number in the lower half of the range for the 
Real.  Any context provided in the model schema or ontology will be used where possible, e.g., 
model formalism.  For example, consider the task of mapping a true Boolean value to a Real 
number for a neural network node that takes on values between 0 and 1 and has a weighting 
threshold of -.3.  The context of the neural network formalism can be used to deduce that the 
weighting threshold should be used to scale the random number generated from the Boolean 
value.  For instance, without considering the weighting threshold, fuzzifying a Boolean value of 
true could result in a random Real value between .5 and 1 for the node.  Taking the weighting 
threshold into account, we would map a Boolean value of true only to values between .8 and 1, 
to ensure that the node fires, i.e. firing is correlated with a Boolean value of true. 

5.1.1.4 String Conversions 

In cases where output are free formed Strings and no cardinality or set of possible Strings is 
specified in the model schema or ontology, then no support can be made.  The user will have to 
explicitly provide some sort of translation in the ontology, schema, or through the CPEF GUI.  
However, in many cases, we can at least rely on the model schema to specify the number of 
possible Strings that can be specified for a particular value.  We can then use this information to 
provide some level of automatic translation.  

For instance, a user could create a model A with an “economy” element that takes on a 
decimal value between 0 and 1.  Another user may create a model B that also has an economy 
element but allows it to take on 3 different string values:  “good”, “neutral”, “bad”.  This is not 
only a difference in granularity of data values, but also a difference in the basic data type being 
used to represent the values for each economy element.  We can use the XML schema for both 
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models and an XSLT translator to map from one type of value to the other.  In our example, we 
can normalize the integer values and then discretize them to fall within three ranges, one range 
being associated with each possible string value.  Specifically, values for model A’s economy 
element fall between 0 and 1, thus we can create the following mapping: 
• Economy < .33 = bad 
• Economy >.33 <.66 = neutral 
• Economy >.66 = good 

5.1.2 Logical Incompatibilities 

In some cases, model A may have more outputs than model B has inputs or vice versa.  
When integrating models, we therefore need methods for addressing these situations.  For an 
overabundance of values we can simply use some form of aggregation.  Again, a model schema 
or ontology can specify how this aggregation should be performed, or the user could specify this 
through the CPEF GUI.  In the case where we have only one value but must map to more than 
one, we can simply duplicate the value or partition it according to any context provided in the 
model schema or ontology.  Duplication will be the default unless the user specifies otherwise. 

In some cases, the rate of output and/or input can differ.  It is believed that this will not cause 
a problem in most cases, however the user may want to specify behavior in the model schema or 
ontology in order to affect more precise or specific behavior in the integrated model. 

5.1.3 Model Persistence Format Incompatibilities 

In essence, this issue really mirrors the greater task of integrating PMESII models.  The 
existence of a standard schema or ontology for PMESII models would immediately resolve this 
issue.  Unfortunately we can not depend on such a standard or adherence to it.  A partial solution 
may be to evolve or derive a standard schema or ontology as described in sections 4.1 and 4.3.8.  
In either case, most effective solutions will entail the use of XML and XSLT for the translation 
of one model format to another.  

5.2 Ontological Incompatibility 

Ontological incompatibility refers to two models having different structures including the 
entities they specify and the relationships between them.  For instance, a rules system model may 
have several pairs of nodes connected by one edge (precedent and consequent) where as a 
Bayesian net will typically have more of a tree structure.  Nodes can have different names, 
graphs can be directed or undirected, and two models representing the same system can be at 
different resolutions and thus include a different number of nodes and edges.  The principle issue 
of this incompatibility is determining which entities, nodes, or edges in different models should 
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map to one another for interoperation.  CPEF is designed to leverage several heuristics and 
methods for inferring these mappings as described below. 

5.2.1 Syntactic Heuristics 

The labels and descriptions of nodes and edges in differing models can be compared based 
on their raw string content.  If these String components match then the nodes or edges may be a 
match as well.  For instance, “runway16” may map to “runway”.  A threshold for how many 
characters must match to infer a string match must be specified.  CPEF will contain a default that 
can be modified by the user and adapted over time (or learned) based on user interaction.  This 
type of matching can also include matching nodes/edges based on the range, cardinality, and 
other attributes of their possible values. 

5.2.2 Semantic Heuristics 

Nodes and edges from different models can be compared based on the semantics of their 
labels, descriptions, and any other textual metadata specified in a XML file, XML schema, 
and/or ontology.  Elements from different models that have a semantic similarity can then be 
mapped to one another for model integration.  For instance, a node with the name “airport” in 
one model may be mapped to a node with the name “runway” in another model based on the 
semantic similarity of their labels.  Semantic similarity is determined by the relations between 
two words as derived from statistical usage, ontologies, thesaurus, dictionaries, etc.  There are 
both Service Oriented Architectures (SOA) and API specifications for this purpose including 
WordNet (Al-Halimi et al., 1998) and Lexical Freenet.  

WordNet was begun in 1986 and is based on Prolog, but RDF translations of it and a Java 
interface are now in the public domain.  The database now contains about 150,000 words 
organized in over 115,000 synonym sets for a total of 207,000 word-sense pairs.  The public 
domain toolkit JWNL (Java WordNet Library) provides an API to access this capability. 

Lexical Freenet is a natural language processing (NPL) implementation that uses WordNet 
for semantic comparison.  Figure 10 shows the web interface for Lexical Freenet matching 
“runway” to “airport” based on semantic similarity.  How to use these and other enabling 
technologies is described further in Section 6 in the context of a system design specification. 
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Figure 10:  Semantic Matching of Airport and Runway 

5.2.3 Relation Mapping 

Relation mapping can be used to address ontological incompatibility by mapping nodes from 
one model to nodes of another based on their relations (how they are connected) within their 
individual models.  With this information, we can then suggest potential mappings between 
nodes of different models based on the similarity of their relations within their respective 
models. Consider the nodes α of model A and β of model B.  Though these nodes may have very 
different names, they may have very similar relations.  For example, both could influence five 
other nodes and be influenced by four other nodes.  Based on their similarity, we may be able to 
deduce that these nodes can be mapped together for model integration.  It is important to note 
that relations encompassing a node are not merely all of its incoming and outgoing edges; they 
also include features identifying how the node affects any other nodes in the model.  For BBNs, 
that would be analogous to performing a sensitivity analysis on a node.  It is possible that two 
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nodes from different BBNs may be capable of being mapped to each other based on each having 
a similar degree of influence within their respective models.  While this approach should rarely 
be used to automatically draw links, it can be used to make effective recommendations. 

5.2.4 Model Node Aggregation 

Model aggregation can be used to address ontological incompatibility by identifying how sets 
of nodes in different models with differing cardinalities may be mapped to one another.  It may 
be the case that a node α in model A maps to a subset of nodes N in model B, resulting in 
incompatible ontologies as in the two frames of Figure 11.  For example, consider α to be the 
node airport and N to be the subset of nodes runway, plane, radar, and air traffic control.  The 
question is, which nodes should airport be mapped to for model integration?  We can use the 
semantic similarity of the labels on the nodes of N (e.g., interfacing with WordNet for 
ontological inference) to aggregate N into one meta-node: airport’ as in the bottom frame of 
Figure 11.  Using semantic similarity between airport and the constituent nodes of airport’, we 
can then infer that these two entities should be mapped for model integration.  More specifically, 
the inputs to airport could potentially be mapped as inputs to all nodes of airport’.  

We can also infer the pairing of airport and airport’ using relation mapping.  To continue the 
example, consider relations between airport and the other nodes of model A, and airport’ and any 
remaining nodes of model B.  If their relations are similar, then airport could be a candidate for 
integrating with all of the nodes of airport’.  For instance, both airport and airport’ could be 
connected to the nodes passenger, ticket, and pilot.  With ontological inference, we can see that 
the relations of airport and airport’ are similar within their respective models (even though the 
relations of airport are not similar to the relations of any of the constituent nodes of airport’).  
We can then deduce that these nodes should be mapped for model integration. 
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Figure 11:  Model Node Aggregation Example 

5.3 Formalism Incompatibility 

5.3.1 Established Formalism Mappings 

There has been a great deal of research on mapping between different algorithm formalisms 
and there are a number of established standards.  Table 3 shows a matrix where the following 
formalisms appear in the outer cells of both the X and Y axis: Bayesian Probability, Dempster-
Shafer, Fuzzy Logic, Possibilistic Theory, Certainty Factor, and Symbolic Dictionary.  Each 
internal cell denotes the mechanism used for mapping between associated formalisms on the 
outer cells of the X and Y axis.  Note that the mechanism for mapping from X to Y may not 
necessarily be the same mechanism used for mapping from Y to X.  Highlighted cells represent 
established mechanisms for mapping between different formalisms, while non-highlighted cells 
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represent our recommendations for mapping approaches.  In other words, there are known and 
established algorithms for mapping between the formalisms that are joined by a highlighted cell. 

Table 3:  Formalism Mappings 
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5.3.2 Using XML Schemas and Ontologies for Formalism Mapping 

Ontologies can explicitly identify mappings between formalisms in the attributes of edges 
within a PMESII network model.  For formalisms such as Bayesian networks and argumentation 
networks, relations correlate with the edges between nodes.  We can add an attribute to each 
edge in a Bayesian network XML schema declaring a “causes” relationship between a parent and 
child node it connects.  Further, we can specify that types of edges declaring a “causes” 
relationship should be mapped to the “entails” relationship of a rule-based model.  When 
mapping from a Bayesian network model to a rule based model, we can then infer from the 
ontology that a “cloudy” node in a Bayesian network that “causes” a “rain” node should be 
mapped to a rule that has the variable “cloudy” as a precedent and “rain” as a consequent. 
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5.4 Sub-Domain Gaps 

Sub-domain Gaps can be addressed by learning ontologies and ontological evolution where 
the relationships between models are implicitly specified as models are built.  These approaches 
are described in section 4.1 and 4.3.8.  Mixed initiative approaches can also be used throughout 
the CPEF structure to address all of the interoperability gaps including differences in sub-
domains.  For instance, suggestions could be made as to what nodes and/or edges should be 
related between two models.  The user could then accept, edit, or ignore these suggestions.  One 
simple mixed initiative approach would be reinforcement learning (Kaelbling, Littman, & 
Moore, 1996) guided by these user selections.  If a user accepts a suggestion, the system could 
increase the number of related suggestions.  If a user rejects a suggestion then the system should 
learn not to make similar suggestions in the future.  Even devoid of other heuristics, CPEF can 
store historical information as to what input and output types the user typically maps together 
and offer these mappings as suggestions for subsequent model integration. 
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6. Recommendations for System Design and Enabling Technologies 
This section provides a design specification for a system that implements the approaches 

outlined in the previous section.  Included here is a description of the current CPEF architecture 
along with recommendations for a full-scope implementation, enabling technologies, and the 
procedural steps during model integration.  

6.1 CPEF System Architecture 

Figure 12 shows the CPEF System Architecture in the context of integrating with a Service 
Oriented Architecture (SOA) for referencing PMESII model repositories, lexical databases, 
ontology databases, and related data resources.  In this section we present recommendations for 
the design of the CPEF system.  Each subsection provides an overview of a CPEF architecture 
component along with enabling technologies that can be used for its implementation.  We 
interleave the existing CPEF framework with recommendations for a full-scope implementation. 

CPEF can be implemented within a larger Service Oriented Architecture concept. 
Specifically, its use of WordNet and related lexical databases for semantic analysis and existing 
models and ontologies for ontological inference can be programmed as a web services 
application.  The PMESII Model Repository in the upper left of Figure 12 represents data storage 
of PMESII model XML files, XML schemas, and ontologies as described in Section 4.3.  This 
information will be used primarily by the Inference Engine as described below.  The Integrated 
Systems shown in the upper right of the system architecture represents lexical databases, 
ontologies, and also intelligence data that may be used by the Model Analyzer. 
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Figure 12:  CPEF System Architecture 

6.1.1 User Interface 

The user interface for CPEF is a sub-component of the PMESII IDE provided by GRADE.  
Within the prototype it consists of one window where two models are displayed side by side and 
suggestions are made for how their nodes, attributes, inputs, and outputs can be mapped for 
model integration.  The user interface for the CPEF prototype is shown in Figure 13.  The bottom 
frames of the CPEF prototype show the results of a semantic analysis in order to explain the 
suggestions being made for model mapping and integration.  In Figure 13 the bottom frame is 
showing the results of a semantic analysis of “death” which corresponds to the nodes in the 
health model (shown in the upper left frame of the figure) for the number of deaths over discrete 
periods of time.  
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Figure 13:  CPEF Prototype 

6.1.1.1 PMESII Model Templates 

In a full-scope CPEF implementation, there will be a pallet of nodes, links, and default 
models that the user can choose from in creating new PMESII models.  Not only will this 
expedite the process of model construction, but it also facilitates the use and evolution of a 
PMESII ontology as described in Section 4.3.8.  Such a mechanism will resolve many of the 
issues of model integration, adaptation, and interoperability. 

6.1.1.2 Mixed Initiative Learning 

Section 4.1 describes the concept of mixed initiative learning.  The driver of this mechanism 
will be user interactions with the CPEF interface.  For instance, CPEF may suggest the user map 
the “death” nodes of the model on the left of Figure 13 with the health nodes of the model on the 
right.  This would be done by highlighting both nodes and is shown in the figure.  However, the 
user may actually decide to use the number of deaths in one model as an input to the morale of 
the people in the other model.  To do so the user would unselect the “health” node and select the 
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“morale” node of the model on the right. In doing so, the CPEF system can store this interaction 
and weaken the strength of its recommendations for mapping “death” to “health” within any 
models.  If the user subsequently maps “death” to “morale” in other models, the CPEF system 
can learn this new mapping and start providing it as a recommendation. 

6.1.1.3 User Profiles 

Section 4.2 describes the concept of collaborative filtering.  This is the technology used to 
make movie recommendations on NetFlix and related websites and services.  The CPEF system 
can store user profiles so as to accurately aggregate user statistics, learn from use cases, and 
improve recommendations for model integration over time.  In addition, user profiles can store 
settings specific to a user such as the types of nodes and links typically used to expedite model 
construction and integration.  

6.1.1.4 Enabling Technologies  

Our in-house GRADE component can provide all JAVA APIs necessary for the CPEF user 
interface.  There are also a number of graphing and modeling tools and APIs that can be used. 

6.1.2 Model Parser 

The model parser is responsible for loading PMESII model files and parsing them according 
to their native format.  It should have a battery of file I/O primitives based on common file types 
such as XML, XSD, and RDF.  It will also have a simple heuristic that checks files for 
specification type, e.g. XML, RDF, OWL, in order to determine what heuristics and algorithms 
should be used for later processing.  The final result of model parsing will be a parse tree that 
CPEF can refer to and manipulate during other processing stages.  The Model parser will consist 
of a number of sub-processing components to support low level natural language processing 
(NPL) and the operation of other CPEF components.  These will process text on node and edge 
labels and descriptions and can include grammar specific repair heuristics, full minimal distance 
parsers, skipping and maximal coverage parsers, and connectionist parsers.  A basic set of 
parsing components and stages are summarized in the subsections below.  

6.1.2.1 Morphological Analysis 

Morphological analysis has to do with mapping from one form of a word to another along 
dimensions such as part of speech or plurality for purposes of semantic analysis.  For instance, a 
lexical dictionary may contain an entry for “run” but not “running”.  In order to perform 
semantic analysis with that dictionary, a system must first derive the word “run” from “running”.  
Morphological analysis does this by indexing a record of statistical information on how words 
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are used in order to map from one to another.  A more sophisticated example may be mapping 
“method” to “methodology”, or “sub-domain” to “subdomain”. 

6.1.2.2 Lexical Analysis 

The Model Parser should contain one or more sub-parsing routines for lexical analysis of 
model component labels, descriptions, and any other specified metadata.  Lexical analysis strips 
words of punctuation, numbers, and other symbols that would interfere with other heuristics and 
algorithms used in CPEF.  This is a standard component of NPL architectures.  Several 
components of CPEF including the syntactic and semantic analyzers rely on parse trees 
containing non-compound, contiguous strings of characters for analysis.  This is standard among 
NPL architectures.  For instance, a user may employ terminology that is specific to a particular 
mission, or they may use numbers in certain node labels.  To use our common example of 
runway and airport, the user may have a model with a node labeled “runway13” since there are 
13 runways and he is specifically referring to one of them.  When integrating that model with 
another that has a node labeled “airport”, in order to syntactically and semantically compare 
those two labels, we need to truncate “runway13” to “runway”.  This is a very simple process, 
however can become more complicated in particular instances of punctuation such as “it’s”. 

6.1.2.3 Enabling Technologies 

There are several open source and commercial toolkits for natural language processing.  One 
popular one is aptly named Natural Language Toolkit and is available on Source Forge at this 
web location: http://nltk.sourceforge.net/.  It features several parsers that can be used within the 
model parser component, and even features GUIs for examining their output and performance. 

6.1.2.3.1 WordNet 

WordNet  is an open source project out of Princeton which consists of a lexical database that 
can be used for semantic analysis.  JWNL  is the java API for WordNet and includes a number 
of primitives for morphological analysis.  The CPEF prototype uses JWNL and a local WordNet 
dictionary, however WordNet can also be used as a web service within a Service Oriented 
Architecture. 

6.1.2.3.2 JWord 

JWord is an open source Java API that integrates with WordNet using JWNL.  The benefits 
of JWord are its open plug-in architecture.  Additional dictionaries, including a PMESII 
dictionary and ontology, can easily be integrated by writing a “PMESII-Driver”.  The CPEF 

http://nltk.sourceforge.net
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prototype integrates JWord with GRADE and uses not only WordNet but also the Roget 
thesaurus.  

6.1.3 Inference Engine 

The Inference Engine is largely responsible for performing the analysis described in Section 
2.1.2, however, it can be used to address all model incompatibilities and functionality gaps.  It 
can use XML files, schemas, and formal ontologies as follows: 

• Interface Incompatibility: validate data types and interfaces using XML schemas or 
infer validation from node relations in order to provide mappings between data types 
and data translation for input/output pairing 

•  Ontological Incompatibility: perform reasoning based on the structure and 
specification of models for integration as described in Section 2.1.2 

• Formalism Incompatibility: refer to a taxonomy of formalisms and instructions for 
how they are mapped within an ontology, execute the mappings specified in an XML 
schema, or infer formalism mappings by comparing similar relations in the structures 
of PMESII models 

• Subdomain Gaps: refer to XML and ontology specifications and model relations 
such as common parents or children to see how different domains can be mapped to 
one another. 

The inference engine can also be used to support querying and reasoning with single models 
and networks of heterogeneous models.  Most first and second order logics can be executed for 
answering such questions as:  

• “What entities influence the morale of the people?” 

• “What number of civilian deaths is required to influence the people to riot within a 
particular region?” 

• “Is there an entity that influences both economy and military infrastructures?” i.e., 
eliminating such an entity can achieve the goals of targeting both economy and 
military infrastructures. 

6.1.3.1 Enabling Technologies 

6.1.3.1.1 Jena 

Jena is a Java framework for building Semantic Web applications.  It provides a 
programmatic environment for RDF, RDFS and OWL, SPARQL and includes a rule-based 
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inference engine.  Jena is open source and grown out of work with the HP Labs Semantic Web 
Program.  The Jena Framework includes: 

• An RDF API 
• Reading and writing RDF in RDF/XML, N3 and N-Triples 
• An OWL API 
• In-memory and persistent storage 
• SPARQL query engine 

6.1.3.1.2 Pellet 

Pellet is an open-source reasoner that works with OWL-DL.  It accepts the SPARQL 
protocol and RDF query language (SPARQL) and provides a Java API to make it easy to 
integrate into custom systems.  According to the literature, Pellet is a complete and capable 
reasoner with very good performance, extensive middleware, and a number of unique features. 

6.1.4 Model Analyzer 

The model analyzer is responsible for syntactic and semantic analysis of any metadata 
provided in PMESII models as described in Section 5.2.  This includes text labels and 
descriptions on nodes, edges, and attributes.  It is primarily used for resolving ontological 
incompatibilities, although it can also be used in other processing stages.  It is important to note 
the distinction between model analysis and ontological inference.  Within this document, related 
presentations, and the CPEF system, ontological inference refers to logical operations performed 
on the structures of PMESII models.  Model analysis may use lexical dictionaries which are 
themselves ontologies, however it primarily operates on the text internals of PMESII models 
rather than their structure or data specific entries such as data type and cardinality of values. 

The model analyzer will be used primarily for mapping nodes and edges from one model to 
another for integration based on one or more of the following: 

• Part of speech (POS) 

• Plurality 

• Semantic similarity of text labels and/or descriptions 

• Common usage patterns 

• Semantic relationships (antonym, hypernym, hyponym, etc.) 

The model analyzer will also be used in resolving formalism incompatibilities by 
investigating semantic relations between words, e.g., “entails” in sentence structure to be related 
to “entails” in a rules system, and addressing subdomain gaps by investigating potential 
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hyponyms and hypernyms, e.g., how two domains may have a common parent, even if necessary 
to recurse back to the highest levels of a PMESII hierarchy. 

6.1.5 Ontology Learner 

The ontology learner observes user interactions, consumes parsed models, and clusters the 
information available in model repositories to derive ontologies and perform automated tagging 
and annotation.  The resulting ontologies are also stored within the model repository.  The 
premise for doing this is that much of the analysis necessary for model integration can be done 
during model construction and stored for later processing.  In other words, when a user creates a 
model, some level of analysis can be performed on it, even if the user is not currently engaged in 
model integration.  The output of that analysis can be a learned ontology, which is used later 
when the user _is_ engaged in model integration. 

The use of ontologies in CPEF is described in Section 4.3 along with how ontology learning 
and automated tagging can take place.  The more metadata specification the better, however 
CPEF is designed to handle variable levels of specification including none at all.  However, with 
ontology learning, ever model construction adds to the ontology base of CPEF and can be used 
for model integration. 

6.2 CPEF Processing Stages 

This section presents a high level overview of the processing stages of CPEF in a linear 
sequence.  These stages assume the implementation of the architecture shown in Figure 12. 

• Users construct models using templates and/or a pallet of components available from 
existing models and manual plotting nodes, edges, and their relations.  This is done 
via the User Interface and related mechanisms. 

• Users can subsequently load multiple models for integration and use that may differ 
in structure, domain, and formalism, i.e., may have incompatibilities described in 
Section 2.1. 

• The Model Parser of CPEF parses the models into a tree structure and prepares it for 
syntactic and semantic analysis.  An initial schema, metadata, and ontology lookup is 
performed as some users may explicitly specify how models should be integrated. 

• The Model Analyzer takes the parse tree of both models and compares them based 
on semantic similarity to generate an initial list of potential node, edge, input, and 
output pairings.  It performs syntactic and semantic analysis using lexical databases 
shown as Integrated Systems in Figure 12. 
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•  The Inference Engine takes the output of the Model Analyzer and refines the list of 
potential node, edge, input, and output pairings using ontological inference as 
described in Section 4.3 (and more specifically Section 4.3.12) and 5.2.  It uses a 
database of existing models and ontologies in the PMESII Model Repository as a 
point of reference for its processing. 

• The recommendations for model integration are presented to the user in the CPEF 
User Interface.  The user accepts, rejects, or modifies the recommendations for 
model integration provided by CPEF.  These interactions are fed into algorithms for 
mixed initiative learning and the Ontology Learner. 

• The I/O Integrator takes the selections made by the user for model integration and 
attempts to create a mapping or translation between the data types of inputs and 
outputs of the integrated models.  This processing uses the approaches for resolving 
interface incompatibilities as described in Section 5.1.  If there is any conflict, the 
user is presented with selections for resolving the interface incompatibilities. 

• The final results are parsed by the Ontology Learner and any necessary 
modifications are made to the PMESII Model Repository for subsequent processing.  
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7. Reasoning with Heterogeneous but Integrated PMESII Models 
At a fundamental level, reasoning with PMESII models is performed to determine what 

inputs, to what entities, generate what outputs.  Section 2.2 describes some of the issues involved 
in reasoning with PMESII models while Section 4.3.12 describes how reasoning can be 
performed with ontological inference.  Here we describe some of the implications of reasoning 
with a network of potentially heterogeneous PMESII models, i.e., more than one interconnected 
models that have different formalisms e.g. Ptolemy model, Bayesian network, neural network, to 
identify leverage points that represent opportunities to influence capabilities, perceptions, 
decision making, and behavior.  This is essentially the reason for model integration in the first 
place. 

7.1 Formalism Issues 

A difference in formalisms of two interconnected models affects not only model integration, 
but also how inference and reasoning can be performed.  Specifically, the question of how 
activation is propagated through a network is contingent on the formalism of a model.  This may 
not be an issue for certain interconnected models, e.g., for neural networks, outputs are always 
“on” or “off”, for rules systems outputs are “true” and “false”, both of which can be mapped 
fairly easily to one another.  However, for some models, such as Bayesian networks, the 
propagation of evidence and probability requires aggregation algorithms that do not translate to 
other formalisms.  

Many of the typical inference techniques for determining how inputs to one node of a model 
will influence the outputs of another node involve some form of backward chaining.  Some 
formalisms preclude such techniques because of the manner in which their inputs and outputs are 
processed.  To use backward chaining to determine what inputs to one model produce what 
outputs of another model, both models must have the same formalisms, and that formalism must 
allow backward chaining.  CPEF therefore includes designs for reasoning models that do not 
entail backward chaining as described below. 

7.2 Approaches for Reasoning with Integrated Models 

Here we provide two methods for reasoning with integrated and heterogeneous models that 
do not  share a common formalism.  These methods can be used for reasoning with individual 
PMESII models as well, however their strength is in their robustness and general applicability 
when working with networks of models. 
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7.2.1 Monte Carlo Simulation 

Monte Carlo simulation with PMESII models involves randomly generating inputs, to 
randomly selected nodes of networked models and observing the outputs.  The goal is to achieve 
a uniform sampling of the space of all possible inputs in order to derive a general description of 
system dynamics.  One of the advantages of this approach is that it can be performed rapidly, 
however the more simulations, the more accurate the description of system dynamics.  This has 
to do with the law of large numbers and probability.   

7.2.2 Sparse-Grid Simulation and Data Mining 

Sparse-grid simulation iterates through a subset of all possible networked model inputs and 
observes each networked model output.  The subset is a discretization of all possible networked 
model input values.  For instance, if one node can take on any decimal value between 0 and 1 
then it might be discretized to the set of values [.0, .2, .4, .6, .8, 1.0].  

The outputs of all simulations can be stored in a database and then data mining can be 
performed.  In general, the input values for a simulation will be the key to its entry in the 
database, and the outputs will be the values within its entry.  Data mining algorithms such as 
association rules can be computed in linear time to determine correlations between inputs and 
outputs between models.  The result of such algorithms will be a description of system dynamics, 
what entities represent the greatest influence on the system, and how they influence that system.  

This approach can be parallelized and performed using grid computing architectures, 
however in most cases it will incur a high cost in computation time.  The advantage of this 
approach is its comprehensive investigation of system dynamics.  The finer grained the 
discretization of possible networked model inputs, the more accurate and detailed the description 
of system dynamics. 



 82 

8. Appendix:  Uncertainty, Classification, Approaches, and Gaps 
Resolution 

Ignorance can be generally characterized as lack of information.  Different types of 
knowledge may be lacking in a knowledge base of PMESII models and consequently give rise to 
different kinds of uncertainty.  Here we present a survey of certain common forms of ignorance 
and of the mathematical techniques that have been suggested to quantify ignorance.  We then 
discuss interrelationships among these techniques. 

Ignorance can broadly be subdivided into the following three categories (Bonissone and 
Tong, 1985; Smets, 1991): 

• Incompleteness:  Incomplete information refers to cases where the value of a variable is 
missing.  Consider a database of battlefield reports that should include information about 
detected unit position, category (friendly, neutral, and hostile), and type (tank, armored 
personnel carrier, Humvee …) for each report.  If, for example, the value of the variable 
representing the type of a detected hostile unit at a certain location is missing from a 
report, then the information in the report becomes incomplete.  But the rest of the 
information in the report is precise and certain, i.e., a hostile unit has been detected at a 
location. 

• Imprecision:  Imprecise information refers to cases where the value of a variable is 
given, but not with enough precision.  Suppose the value of the variable representing unit 
type is tank or “Humvee” of a detected hostile unit at a certain location.  The information 
is complete because the values of each of the three variables representing unit position, 
category, and type are given, but it is imprecise because there is some ambiguity as to the 
exact type of the detected unit. 

• Uncertainty:  Uncertain information refers to cases where the information is complete, 
precise but uncertain since it might be wrong.  This type of ignorance appears when the 
observer (human or sensor) is taken into account.  It is the observer that is not certain 
about the available information. 

Usually a database variable, i.e., column attribute for a relational database, is constrained 
either by a domain, when the variable is qualitative, or by a range, when the variable is numeric.  
The variables representing unit type and category are qualitative variables, whereas the variable 
representing unit position is a numeric one.  Then it might be argued that incompleteness is just 
an extreme form imprecision.  Moreover, imprecision and incompleteness are context dependent 
in the sense that information that is imprecise or incomplete in one context may be precise or 
complete in another context.  For example, the imprecise information “tank or Humvee” is 
sufficient for a mission to target any hostile unit, but insufficient for destroying only those targets 
with striking capabilities.  Similarly, if the mission is to target any hostile object in the air within 
the 100 miles radius of the base, then the information like “a hostile object is within 50 miles” or 
“a hostile object is very close” is sufficient to determine that the object is a target.  But if the 
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mission is to target any hostile object within the 40 miles radius of the base then neither piece of 
information is sufficient. 

The following table presents subcategories of ignorance, example instances, and techniques 
for handling ignorance. 

Table 4:  Classification of Uncertainties 

Type Subcategory Example Formalism 

Existential 

A hostile unit has been 

detected at a certain 

location, but its type is 

unknown 

First-order logic 

Incompleteness 

Universal 

All the units that have 

been detected so far at 

various locations are 

hostile, but their types 

are unknown 

First-order logic 

Disjunctive 
The unit type is tank or 

armored personnel 

carrier 

Classical logics 

Negation 
The unit type is not 

tank 

Non-monotonic 
logics 

Interval-valued
A tracked hostile unit is 

traveling between 25 

and 40 mph 

Interval theory 

Fuzzy-valued 
A tracked unit is 

moving very fast 
Fuzzy logic 

Imprecision 

Possibility 
(physical) 

The possibility that the 

traveling speed of the 

tracked hostile unit to 

be 30 mph 

Modal epistemic 
logics, 
possibilistic logic, 
and possibility 
theory 
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Probability 
The chance of the unit 

being tank is 70% 
Bayesian theory 

Possibility 
(epistemic) 

It is possible that the 

tracked hostile unit is 

traveling at 30 mph 

Modal epistemic 
logics, 
possibilistic logic, 
and possibility 
theory 

Uncertainty 

Credibility 
0.8 is my degree of 

belief that the unit type 

is tank 

Theory of belief 
function and 
certainty factor 

The uncertainty handling problem can simply be stated as follows.  Suppose a decision 
maker or an analyst has the universe of discourse 1{ ,..., }nw wΩ =  at hand as the set of likely 

hypotheses for a given decision-making problem.  Quantification of uncertainty involves 
attaching these hypotheses with some values, be they probabilities, possibility measures or any 
other qualitative terms suitably defined by the decision maker, reflecting the decision maker’s 
degrees of beliefs in their likely occurrences based on the available evidence.  Any formalism 
that wants to represent quantified beliefs of a decision-making agent has two components: the 
static component describes the agent’s state of belief given the information available to the 
agent, and the dynamic component explains how to update beliefs given new pieces of 
information become available to the agent. 

Existential and universal incompleteness in a knowledge base can be represented using 
quantifiers of first-order logic.  Disjunction and negation types of imprecision can be represented 
using connectives of both propositional and first-order logics.  However, classical logic is 
monotonic in nature, and thus requires some kind of rule for inferring negative information from 
a knowledge base.  Various types of non-monotonic logics have been studied over the years, of 
which Reiter’s default logic is the most prominent one. Intervals and fuzzy-valued information 
can be handled by interval theory and fuzzy logic respectively. 

Two forms of possibility have been described to handle via possibility theory: the physical 
and the epistemic (Hacking 1975).  The first form, 'possible that', is related to our state of 
knowledge and is called epistemic.  The second form, 'possible for', deals with actual abilities 
independently of our knowledge about them. The distinction is similar to the one between the 
epistemic concept of probability (called here the credibility) and the traditional one based on 
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chance.  Possibilistic logic extends possibility theory with a richer representation of domain 
knowledge via logical sentences. 

The probability theory is the predominant paradigm for handling uncertainty, especially 
Bayesian probability where interpretation of a probability value is degree of belief.  The 
Possibility theory (Zadeh 1978), is a natural tool to model the imprecision and the uncertainty 
when they occur together in ordinary language such as, “It is likely that the vehicle is moving 
fast”.  The theory of belief function or evidence theory was initiated by Dempster and developed 
by (Shafer 1976).  It uses two related measures, called belief and plausibility measures, as upper 
and lower probabilities.  The probability and possibility measures are special cases of the belief 
and plausibility measures. 

Table  shows the formalisms that we have considered here for handling various types of 
ignorance, nature of their output quantifying uncertainties, and examples.  The hypothesis set is 
{ , , }None Slight Long  representing qualitative values for expressing the delay in arrival of a 

vehicle. 

Table 5:  Uncertainty output types from different formalisms 

Formalism Output Uncertainty Example 

Bayesian 
Probability 

Probability distribution 
None: 0.25, Slight: 0.20, 
Long: 0.55 

Dempster-Shafer 
Belief distribution 
among focal elements 

{None}: 0.25, {None, 
Slight}: 0.40, … 

Fuzzy Logic 
Aggregated firing 
strength and crisp 
values 

None: 0.30, Slight: 0.60, 
Long: 0.40 

Arrival Delay = 2.5 hours 

Possibility Theory Possibility measure 
None: 0, Slight: 0.20, Long: 
0.55 

Certainty Factor Certainty factor values 
None: -0.25, Slight: 0.20, 
Long: 0.55 

Symbolic Qualitative values 
None: Unlikely, Slight: 
Probable, Long: Certain 

Table 6 shows various approaches to transformation between formalisms.  Here we clarify a 
few transformation instances.  Dempster-Shafer theory of belief function is a generalization of 
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Bayesian probability, and, conversely, any Bayesian approximation of belief function, such as 
Transferable Belief Model, can do the reverse transformation.  A special section provided below 
for transformation between probability and possibility approaches.  The transformation between 
probability and certainty factor can be achieved by adjusting the scales [0,1] and [-1,1] 
appropriately.  Any transformation between a user-defined symbolic dictionary for representing 
uncertainty and the rest of the formalisms has to be customized individually.  Since a 
transformation exists between probability and Dempster-Shafer, a transformation between 
Dempster-Shafer and rest of the formalism can be defined based on the transformation between 
probability and rest of the formalism.  The highlighted entries in the table are indicative of those 
transformations that are well-developed. 

Table 6:  Approaches To Transformation Between Formalisms  

X

Certainty 
Factor-to-
Symbolic 
Mapping

Possibility 
Measure-to-

Symbolic 
Mapping

Membership 
Degree-to-
Symbolic 
Mapping

Belief Value-
to-Symbolic 

Mapping

Probability-to-
Symbolic 
Mapping

Symbolic 
Dictionary

Symbolic-to-
Certainty 

Factor Mapping

X

Mapping from 
Possibility 

Measures to 
Certainty 
Factors

Mapping from 
Membership 
Degree to 
Certainty 
Factors

Via Bayesian 
Approximation

Mapping from 
Probabilities to 

Certainty 
Factors

Certainty 
Factor

X

Membership 
Degree 

Interpretation of 
Possibility 
Measures

Belief 
Interpretation 
of Possibility 

Measures

Transformations 
based on 

Consistency 
Principles

Possibilistic
Theory

Symbolic-to-
Possibility 
Measure 
Mapping

Symbolic-to-
Membership 

Degree 
Mapping

Symbolic-to-
Belief Value 

Mapping

Symbolic-to-
Probability 
Mapping

Symbolic 
Dictionary

Via 
Normalization

Via 
Normalization

Via 
NormalizationNormalization

Certainty 
Factor

Possibility 
Measure 

Interpretation of 
Membership 

Degrees

XVia 
Normalization

Normalization of 
Membership 

Degrees
Fuzzy Logic

Via Bayesian 
Approximation

Via Bayesian 
ApproximationX

Bayesian 
Approximation 
(Transferable 
Belief Model)

Dempster-
Shafer

Transformations 
based on 

Consistency 
Principles

Membership 
Degree 

Interpretation of 
Probabilities

GeneralizationX
Bayesian 
Probability

Possibilistic
Theory

Fuzzy 
Logic

Dempster-
Shafer

Bayesian 
Probability

X
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Symbolic 
Mapping

Possibility 
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Symbolic 
Mapping

Membership 
Degree-to-
Symbolic 
Mapping

Belief Value-
to-Symbolic 

Mapping

Probability-to-
Symbolic 
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8.1 Relating Probability and Possibility 

The transformation between probability and possibility approaches to handling uncertainty 
has been studied by several researchers.  Most of these studies examined consistency principles 
that must be preserved for the transformation, and devised equations.  Here we introduce a few 
well-known ones.  We consider the universe of discourse Ω  is the set 1{ ,..., }nw w  of singletons, 
and the probability and possibility distributions on Ω  are 1( ,..., )np p p=  and 1( ,..., )nπ π π=  
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respectively.  Table  presents a comparison of characteristics between probability and possibility 
approaches. 

Table 7:  Characteristics Comparison Between Probability And Possibility Approaches 

Probability Possibility 

Measure: Probability P  Measure: Possibility Π  

Distribution: p  Distribution: π  

( ) ( )
x A

P A p x
∈

= ∑  ( ) sup ( )
x A

A xπ
∈

Π =  

( ) ( ) ( )P A B P A P B∪ = + , if 

A B∩ = Φ  
( ) max( ( ), ( ))A B A BΠ ∪ = Π Π  

( ) ( ) ( )P A B P A P B∩ = ⋅ , if A and B 

are independent 
( ) min( ( ), ( ))N A B N A N B∩ =  

max( ( ), ( )) 1
( ) ( ) 1, ( ) ( ) 1

A A
A A N A N A

Π Π =

Π + Π ≥ + ≤
 ( ) ( ) 1P A P A+ =  

Ignorance: , ( ) 1x xπ∀ ∈Ω =  Ignorance: 1, ( )x p x∀ ∈Ω =
Ω

 

Zadeh (1978) stated that a high degree of possibility does not necessarily imply a high degree 
of probability, nor does a low degree of probability necessarily imply a low degree of possibility.  
He the defined the degree of consistency between a probability distribution and a possibility 
distribution as 

1

n

i i
i

C p π
=

= ⋅∑  

This degree of consistency does not define a precise relationship between probability and 
possibility, but rather an approximate formalization of the heuristic connection that a lessening of 
the possibility of an event tends to lessen its probability but not vice-versa. 

According to Klir (1993), the transformation from ip  and iπ  must preserves some 

appropriate scale and the amount of information contained in each distribution expressed by the 
equality of their uncertainties.  Assuming the elements of Ω  are ordered in such a way that 

10,i i ip p p +> ≥  and 10,i i iπ π π +> ≥ , where  1 1 0n np π+ += = , Klir proposed the transformation under 

two scales satisfying his uncertainty preservation principle: 
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• Ratio scale: 
1

1

,i i
i i n

k
k

p p
p n

π
π

π
=

= =
⋅∑

 

• Log-interval scale: 
1,/

1/1

1

, (0,1)i i
i i n

k
k

p p where
p n

α α

α

π
π α

π
=

⎛ ⎞
= = ∈⎜ ⎟

⎝ ⎠ ⋅∑
 

The consistency principle of Dubois and Prade (1993) is guided by the principle that values 
of probabilities of events are bounded by the degrees of possibility and necessity: 

( ) ( ) ( )A P A N AΠ ≤ ≤  

The transformation pπ →  below is guided by the principle of insufficient reason, which 

aims at finding the probability distribution that contains as much uncertainty as possible but that 
retains the features of possibility distribution: 

1( )n
k k

i
k i

p
k

π π +

=

−
= ∑  

The transformation p π→  is guided by the principle of maximum specificity, which aims at 

finding the most informative possibility distribution: 

min( , )
k

i i k
k i

p pπ
=

= ∑  

The two transformations defined above are shown to be bijective. 

8.2 Non-monotonic Logic 

Classical logic is monotonic in the sense that inferences are deductively valid and can never 
be retracted in the light of new information.  On the other hand, non-monotonic logics support 
defeasible inferencing, the kinds of inference of everyday life in which conclusions are drawn 
tentatively, reserving the right to retract them in the light of further information.  Thus the set of 
conclusions drawn on the basis of a given knowledge base does not necessarily increase with the 
size of the knowledge base itself.  Default logic (Reiter, 1980) is probably the most extensively 
studied non-monotonic formalisms. 

Default logic augments classical logic by default rules, and consequently the knowledge 
about the world is divided into two parts, representing respectively certain knowledge W in 
closed first-order formulae and a collection D of special inference rules called defaults.  A 
default rule has the form 

1: ,..., nα β β
γ
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where 1, ,..., ,nα β β γ  are well-formed formulae of classical logic. α  is called the prerequisite 
of the default, 1,..., nβ β  are called justifications, and γ  is the consequence. 

A default rule is closed if none of 1, ,..., ,nα β β γ  contains free variables.  A default theory is 

closed if all its default rules are closed.  A default or default theory is open if it is not closed.  
The semantics of a closed default theory ,D W  is based on the notion of extension, which is a 

possible state of the world according to the knowledge base.  Formally, an extension E can be 
recursively defined as follows: 

0

1
1

: ,...,( ) : , ,n
i i i j i

E W

E Cons E D E j Eα β β
γ α β

γ+

=

⎧ ⎫
= ∪ ∈ ∈ ∀ ¬ ∈⎨ ⎬

⎩ ⎭

 

where ( )Cons X  denotes classical deductive closure of X.  The set 
0

i
i

E E
∞

=

=U  is deductively 

closed and an extension of ,D W .  

The definition of extension is extended to open default theories by assuming that the default 
rules with free variables implicitly stand for the infinite set of closed defaults obtained by 
replacing the free variables with terms of the Herbrand Universe of the default theory.  A default 
theory can have one, multiple or no extensions in general.  Therefore, defining entailment (and 
thus semantics for negative information) of a formula from a default theory is not 
straightforward.  The standard variants are credulous entailment under which a formula F is 
entailed if it belongs to at least one extension of ,D W  and skeptical entailment under which F 
follows if it belongs to all extensions of ,D W . 

8.3 Certainty Factor 

One of the early approaches to handling uncertainty in expert systems is Certainty Factors 
(Shortliffe and Buchanan, 1975). The formalism provides a number to measure the decision 
maker’s degree of confirmation or belief in hypothesis, where the maximum value for belief is 
+1.0 (definitely true), and the minimum value is -1.0 (definitely false).  An intuitive 
interpretation of qualitative terms in terms of belief values are shown in the following table: 

 

Table 8:  Qualitative interpretations of certainty factors 

Qualitative Term Certainty Factor 

Definitely +1.0 

Almost certainly +0.8 
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Probably +0.6 

Maybe +0.4 

Unknown [-0.2, +0.2] 

Maybe not -0.4 

Probably not -0.6 

Almost certainly not -0.8 

Definitely not -1.0 

In the certainty factor formalism, unlike in the theory of probability, a piece of evidence E 
could support a hypothesis H without necessarily supporting the complement of that hypothesis. 
In other words, although the property  

( ) ( )| 1 |p H E p H E= − ¬  

holds in probability theory, but the certainty formalism rejects the following: 

( ) ( )( )| |belief H E f belief H E= ¬  

The approach creates the following measures of belief and disbelief: 
1 ( ) 1

( , ) ( , ) ( )
1 ( )

if p H
MB H E p H E p H otherwise

p H

=⎧
⎪= −⎨
⎪ −⎩

 

1 ( ) 0
( , ) ( ) ( | )

( )

if p H
MD H E p H p H E otherwise

p H

=⎧
⎪= −⎨
⎪⎩

 

The value 1 ( )p H−  represents the decision maker’s total doubts in the hypothesis, and thus 

the measure of belief MB based on evidence E computes the reduction in the decision maker’s 
disbelief.  Similarly, the measure of disbelief MD based on evidence E computes the reduction in 
decision maker’s belief.  The measure of belief is then computed as follows: 

1 min( , )
MB MDcf

MB MD
−

=
−

 

Different values of cf are interpreted as follows:  

• cf is positive: evidence supports hypothesis since MB MD>  

• cf is 1.0: evidence definitely supports the hypothesis 

• cf is 0.0: either there is no evidence or that the belief is cancelled out by the disbelief 

• cf is negative: evidence favors negation of hypothesis since MB MD<  
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Certainty factor assigned by a rule is propagated through the reasoning chain.  It involves 
establishing the net certainty of the rule consequent when the evidence in the rule antecedent is 
uncertain.  Given the rule 

IF E THEN H (cf) 

and given ( )CF E , the combined belief in the hypothesis is computed by propagating the 

certainty factor as follows: 

( , ) ( )CF H E CF E cf= ×  

The following are the certainty factor propagation rules for conjunctions and disjunctions: 

1 1

1 1

( ... ) max[ ( ),..., ( )]
( ... ) min[ ( ),..., ( )]

n n

n n

CF E E CF E CF E
CF E E CF E CF E

∧ ∧ =
∨ ∨ =

 

Finally, one needs to combine certainty factors for a hypothesis implicated by more than a 
rule as below: 

IF E1 THEN H (cf1) 

IF E2 THEN H (cf2) 

The combination of cf1 and cf2 for H given both E1 and E2 is 

1 2 1 1 2

1 2
1 2 1 2

1 2

1 2 1 1 2

(1 ) if 0and 0

( , ) if 0or 0
1 min[| |,| |]

(1 ) if 0and 0

cf cf cf cf cf
cf cfCF cf cf cf cf

cf cf
cf cf cf cf cf

⎧ + × − > >
⎪

+⎪= < <⎨ −⎪
⎪ + × + < <⎩

 

A natural requirement for any formalism for handling uncertainty is that the evidence 
combination rule should be associative.  But this rule for the certainty factor formalism is not 
associative.  The rule should never be applied if E1 and E2 are deduced from a common piece of 
evidence E0.  To illustrate, suppose we have the following rules 

IF E0 THEN E1 (1.0) 

IF E0 THEN E2 (1.0) 

IF E1 THEN H (1.0) 

IF E2 THEN H (1.0) 

Let the certainty factor of E0 be α, then both E1 and E2 have certainty factor equal to α .  A 
blind application of the combination rule leads to a certainty factor of 22α α−  for H.  The result 
is wrong as the set of four rules can be reduced into 

IF E0 THEN H (1.0) 
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and therefore the certainty factor of H given E0 should be α .  This example shows the 
danger of using ad hoc models blindly. 

8.4 Fuzzy Sets and Fuzzy Logic 

A fuzzy set A is a subset of a referential set or universe of discourse X whose boundaries are 
gradual.  More formally, the membership function Aμ  of a fuzzy set A assigns to each element x 
in X its degree of membership ( )A xμ  usually taking values in [0,1].  In a conventional set, 

( ) 1A xμ =  (means that x belongs to A) or ( ) 0A xμ =  (means that x does not belong to A).  

Consider the referential set as the interval 0 025 ,120⎡ ⎤−⎣ ⎦  representing temperature values, and 

the three associated fuzzy sets Cold, Warm, and Hot.  The membership functions ,Cold Warmμ μ , and 

Hotμ  in terms of three trapezoidal graphs have been shown in Figure .  Considering the first 

membership function, any temperature value of approximately less than 25 is assumed to have 
the degree of membership 1.0, and this degree gradually decreases as the temperature value 
increases.  The degree of membership is 0 for any temperature value greater than 50. The other 
membership functions can be interpreted in a similar manner.  Note that a membership function 
can be a probability density function, for example, Warmμ  is Gaussian with mean 75 and standard 

deviation 5.0. 

50 80 Temperature in
Degrees Fahrenheit

0

1

μ
Cold Warm Hot

Very Hot

 
Figure 35:  Fuzzy membership functions 

The set theoretic operations on fuzzy sets are defined as below and illustrated in Figure : 

• Union: ( ) ( ) ( ){ }max ,A B A BX X Xμ μ μ∨ =  

• Intersection: ( ) ( ) ( ){ }min ,A B A BX X Xμ μ μ∧ =  

• Complement: ( ) ( )1A AX Xμ μ¬ = −  
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( )B Xμ

X

( )A Xμ

( ) ( ) ( ){ }max ,A B A BX X Xμ μ μ∨ =

1

X

( ) ( ) ( ){ }min ,A B A BX X Xμ μ μ∧ =

1

X

( ) ( )1A AX Xμ μ¬ = −

1

( )B Xμ( )A Xμ

( )A Xμ

X

1

( )A Xμ

(a) (b)

(c)  
Figure 36:  Fuzzy set operations: (a) Union; (b) Intersection; and (c) Complement 

Fuzzy logic provides a foundation for approximate reasoning by extending traditional 
Boolean logic and by allowing truth to be a matter of degree as in the case of membership degree 
in fuzzy sets.  It is applicable to problems where the expressive power of words is greater than 
that of numbers.  For example, a human observer reported that an object was approaching very 
fast, without knowing the exact speed of the object.  Words like “fast” are less precise than 
numbers, but imprecision can be tolerated to achieve robustness.  The four facets of fuzzy logic 
are shown in Figure . 

F.GF G

Logical
Focuses on logical systems 
in which truth is a matter 

of degree 

Relational
Focuses on fuzzy 

dependencies, granulation, 
linguistic variables and 

fuzzy rule sets

Set-theoretic
Concerned with the theory 

of fuzzy sets which 
subsumes fuzzy logic

Epistemic
Concerned with knowledge 

representation, natural 
languages, and semantics

 
Figure 37:  Facets of fuzzy logic (Zadeh, 2002) 
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Here is an example traditional logic-based exact reasoning just to contrast with fuzzy 
reasoning: 

Exact Reasoning: IF engine temperature is hot THEN cooling fan speed is high 

Engine temperature is hot 

Therefore, cooling fan speed is high 

In the case of fuzzy reasoning, the concept of a linguistic variable plays a central role.  In the 
reformulation of fuzzy reasoning of the above exact reasoning, the linguistic variables are 
Temperature and Speed.  Values of linguistic variables are words or sentences in a natural or 
synthetic language, and are constructed by composing primary terms or predicates with 
modifiers.  In the case of the variable Temperature, primary terms or predicates are, for example, 
cold, warm, hot, …, and modifiers are, for example, not, very, quite, rather, ….  Thus, linguistic 
values of the variable Temperature are hot, not cold, very cold, and so on.  A numerical or 
“crisp” value of the variable Temperature is in its universe of discourse, which is the interval 

0 025 ,120⎡ ⎤−⎣ ⎦ .  Modifiers fall into two classes: 

• Fuzzy truth qualifier: quite true, very true, more or less true, etc. 

• Fuzzy qualifier: many, few, almost 

An example fuzzy proposition is “engine’s temperature is very hot.”  Fuzzy expressions or 
formulae are built using fuzzy propositions, logical connectives, and quantifiers.  Here is an 
example fuzzy formula: 

IF rainfall is medium AND vehicle is heavy THEN delay is long 

where the linguistic variable are Rainfall, Vehicle, and Delay.  A fuzzy proposition can have 
its truth value in the interval [0, 1] defined by a membership function. 

In proposition “X is P”, P(X) (or simply P when X is clear from the context) is a fuzzy set 
and the membership function ( )P Xμ  (or simply Pμ ) defines the degree of membership in the set.  

Truth value of the fuzzy predicate is defined by the membership function.  Consider the three 
values, namely Cold, Warm, and Hot, of the linguistic variable Temperature.  Then the truth 
value of the proposition “Temperature is Cold” is defined by Coldμ . 

A generic fuzzy reasoning architecture is shown in Figure .  The Fuzzification component 
computes the membership degrees for each input variable with respect to its linguistic terms.  
The Fuzzy Reasoning component yields the output fuzzy set using computed membership 
degrees and the fuzzy rules, via rule matching, inference, and aggregation.  Finally, the 
Defuzzification component determines a crisp value from the output membership function as the 
final result of solution 
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Fuzzy Reasoning
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Figure 38:  Generic fuzzy engine 

We illustrate the fuzzy reasoning process in the context of an example scenario involving 
estimation of a vehicle’s delay of arrival due to rainfall, which affects the mobility of the vehicle.  
There are three linguistic variables: Weight, Rainfall, and Delay.  The underlying fuzzy rule base 
relating these variables is captured in Table 9.  Each entry in the table is a value of the variable 
Delay given the value of the two Weight and Rainfall in the corresponding column and row 
respectively.  For example, the shaded cell corresponds to the following rule:  

IF weight is heavy AND rainfall is medium THEN delay is long 

 

Table 9:  Fuzzy Rule Base 

SlightLongLongHeavy

NoneSlightLongMedium

NoneNoneSlightLight

LightMediumHeavy

SlightLongLongHeavy

NoneSlightLongMedium

NoneNoneSlightLight

LightMediumHeavy

Vehicle Weight

R
ai

nf
al

l

Delay in 
Arrival

 
The set of rules are as follows when traversing the cells row-by-row starting from left: 

R1: IF weight is heavy AND rainfall is light THEN delay is slight 

R2: IF weight is medium AND rainfall is light THEN delay is none 

R3: IF weight is light AND rainfall is light THEN delay is none 

R4: IF weight is heavy AND rainfall is medium THEN delay is long 
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R5: IF weight is medium AND rainfall is medium THEN delay is slight 

R6: IF weight is light AND rainfall is medium THEN delay is none 

R7: IF weight is heavy AND rainfall is heavy THEN delay is long 

R8: IF weight is medium AND rainfall is heavy THEN delay is long 

R9: IF weight is light AND rainfall is heavy THEN delay is slight 

There will be altogether nine rules corresponding to the nine cells containing the values of 
the variable Delay.  The membership functions for each of these variables are shown in Figure .  
Note that the membership function for ( )Medium Rainfallμ  is Gaussian with mean 28.0 and variance 

is 6.0. 

 

5 10
Rate (mm/hr)

0

1

μ
Light Medium Heavy

25

Rainfall

10 30
Weight (tons)

0

1

μ
Light Medium Heavy

60

Vehicle Weight

1 3
Time (hours)

0

1

μ
None Slight Long

5

Delay in Arrival

 
Figure 39:  Fuzzy sets of the variables Rainfall, Weight, and Delay 

In the fuzzification stage, one needs to determine, given the value of an input variable, the 
degree of membership for each term of the variable.  Given the rainfall is 15.2 mm/hr and 
vehicle weight is 40 tons,  Figure  illustrates the determination of membership degrees and the 
resultant values are the following: 
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(15.2) 0 (40) 0

(15.2) 0.25 (40) 0.1
(15.2) 0.70 (40) 0.60

Light Light

Medium Medium

Heavy Heavy

μ μ

μ μ
μ μ

= =

= =

= =

 

 

5 10 Rate (mm/hr)
0

1

μ
Light Medium Heavy

25

Rainfall

0.25

0.70

15.2

10 30 Weight (tons)0

1

μ
Light Medium Heavy

Vehicle Weight

40

0.6

 
Figure 40:  Determining degrees of membership for a value of the input variable 

We then calculate the firing strength of every rule by combining the individual membership 
degree for all terms involved in the antecedent of a rule. Consider the rule 

IF weight is heavy AND rainfall is medium THEN delay is long 
Since we have ( ) 0.60Heavy Weightμ =  and ( ) 0.25Medium Rainfallμ = , and the antecedent of the rule 

is a conjunction, the combined membership degree is ( ) ( ){ }min 40 , 15.2 0.25Heavy Mediumμ μ = . 

The next step is, for each rule, to apply the firing strength to modify its consequent fuzzy set, 
resulting in a new fuzzy set as the result of applying the rule.  Consider again the following rule 
as an example: 

IF weight is heavy AND rainfall is medium THEN delay is long 

Figure  shows the modification of its consequent fuzzy set with the firing strength 0.25. 
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Figure 41:  Modification of a rule’s consequent fuzzy set 

This modification is essentially reduces the degree of membership for every value of the 
variable Delay in the conclusion.  What we are interested in is the shaded area underneath.  
There will be nine such modifications corresponding to the consequents of the nine rules in the 
fuzzy rule base, and all such modifications need to be aggregated.  This involves combination of 
responses of individual rules to yield an overall output fuzzy set using the max-operator (i.e. 
superimpose the shaded areas).  An example aggregation involving just the three types of 
modifications are shown in Figure . 

 

1 3 Time (hours)0

1

μ

None
Slight

Long

5

Delay in Arrival

If … then delay is none
If … then delay is slight
If … then delay is long

 
Figure 42:  Aggregation of modified fuzzy sets 

The final defuzzification process determines crisp value from output membership function.  
Two of the more common defuzzification techniques are the Centroid and Maximum methods.  
In the Centroid method, the crisp value of the output variable is computed by finding the variable 
value of the center of gravity of the membership function for the fuzzy value.  In the Maximum 
method, one of the variable values at which the fuzzy subset has its maximum truth value is 
chosen as the crisp value for the output variable.  
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Figure 43 shows the projection of the center of gravity of the aggregated membership 
function onto the time-axis, yielding the crisp value 2.5 hours.  This value is the estimated delay 
in arrival given the crisp values for vehicle weight and rainfall. 

1 3 Time (hours)
0

1

μ

None
Slight

Long

5

Delay in Arrival

2.5 hrs  
Figure 43:  Defuzzification 

8.5 Possibility Theory 

Zadeh (1978) introduced possibility theory as an extension of fuzzy sets and fuzzy logic.  
The possibility of an event defined over a finite set of reference or universe of discourse Ω  (an 
event is a subset of Ω ) is a coefficient ranging between 0 and 1 which evaluates how possible 
the event is.  Formally, the possibility is measured as a mapping given below: 

: ( ) [0,1]Π Ω →P  

where ( )ΩP  is the power set of Ω  representing all possible events.  The value of ( )XΠ is 1 

means the event X is completely possible and 0 means the events is impossible.  The mapping 
must satisfy the following properties: 

( ) 0
( ) 1
( ) max( ( ), ( ))A B A B where A B

Π Φ =
Π Ω =
Π ∪ = Π Π ∩ = Φ

 

When Ω  is infinite, the last axiom can be replaced by sup ( )i i
ii

A A⎛ ⎞
Π = Π⎜ ⎟

⎝ ⎠
U , where iA s are 

pairwise disjoint.  Though possibility is compositional with respect to the union operator, it is not 
compositional with respect to the intersection operator. In general, 

( ) min( ( ), ( ))A B A BΠ ∩ ≤ Π Π  

The following properties of the possibility measure are deducible: 
max( ( ), ( )) 1

( ) ( ) 1
A A

A A
Π Π =

Π + Π ≥
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It is possible that each of ( )AΠ  and ( )AΠ  is 1 though only one of A and A  can occur.  The 

degree to which the occurrence of an event A is certain is represented by a necessity measure 
: ( ) [0,1]N Ω →P  with the following properties: 

( ) 0
( ) 1
( ) min( ( ), ( ))

N
N
N A B N A N B

Φ =
Ω =

∩ =
 

When Ω  is infinite, the last axiom can be replaced by inf ( )i ii
i

N A N A⎛ ⎞
=⎜ ⎟

⎝ ⎠
U , where iA s are 

pairwise disjoint. The necessity measure is monotonic: 
( ) ( )if B A then N B N A⊆ ≤  

The following properties of the necessity measure are deducible: 
( ) max( ( ), ( ))

min( ( ), ( )) 0
( ) ( ) 1

N A B N A N B
N A N A

N A N A

∪ ≥

=

+ ≤

 

The necessity measure can be obtained from the possibility measure via the following: 
( ) 1 ( )N A A= − Π  

Thus the occurrence of an event A is certain (i.e. ( ) 1N A = ) if and only if the occurrence of its 
complement A is impossible (i.e. ( ) 0AΠ = ). 

Like probability, a possibility measure on Ω  is determined by its behavior on singletons 
defined as a possibility distribution attached to a variable in Ω .  A possibility distribution of a 
variable in Ω  is defined as a mapping: 

: [0,1]π Ω →  

where ( ) 0xπ =  means x is impossible, ( ) 1xπ =  means x is completely allowed, and there 
exists x ∈Ω  such that ( ) 1xπ = .  The possibility measure ( )AΠ  is then defined as 

( ) sup ( )
x A

A xπ
∈

Π =  

8.6 Possibilistic Logic 

Possibilistic logic provides an approach to handling uncertainty in a logical setting.  Standard 
possibilistic logic expressions are classical logic formulae associated with weights, interpreted in 
the framework of possibility theory as lower bounds of necessity degrees.  A necessity measure 
N on formulas is a function from the set of logical formulas of a language to a totally ordered 
bounded scale with 0 and 1 as bottom and top elements, e.g., the real interval [0,1] , which is 

characterized by the axioms 
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• ( ) 1N =• , where •  stands for tautology 

• ( ) 0N ⊥ = , where ⊥  stands for contradiction 

• ( ) min( ( ), ( ))N P Q N p N q∧ =  

• P Q≡  implies ( ) ( )N P N Q= , where ≡  denotes equivalence in classical logic 

A possibility measure Π  is associated with N by duality as follows: 
( ) 1 ( )P N PΠ = − ¬  

The above expresses that the absence of certainty in favor of P¬  makes P possible.  The 
following holds for all P and Q: 

( ) max( ( ), ( ))P Q P QΠ ∨ = Π Π  

A first-order possibilistic logic formula is essentially a pair, ( , )P α , made of a classical first-

order logic formula, P, and a weight, α , expressing certainty or priority.  The axioms consist of 
all first-order axioms with weight 1.  The inference rules are: 

• If (Ρ,α) and (Ρ Q, β) then (Q, min(α, β)) 

• If (Ρ,α) then (∀xΡ,α), provided the variable x is not bound in Ρ 

• If (Ρ,α) and (Ρ, β), where β ≤ α 

From a semantic point of view, a possibilistic knowledge base K = 1 1{( , ),..., ( , )}n nP Pα α  is 
understood as the possibility distribution π K  representing the fuzzy set of models of K: 

[ ]1..
( ) min max( ( ),1 )

iP in
w wπ μ α= −K  

where [ ]iP  denotes the set of models of iP  so that [ ] ( ) 1
iP wμ = , if iw P∈  (i.e. iw P‘ ), and 

[ ] ( ) 0
iP wμ =  otherwise.  The degree of possibility of w according to the above is computed as the 

complement to 1 of the largest weight of a formula falsified by w.  The model *w  maximizing 
π K  is called the best model of K.  The best model is the most compatible with K among all the 
interpretations.  The following equivalence establishes that knowing π K is sufficient for all 

deductions from K: 

K(Ρ,α) if and only if πK(Ρ,α) 

An important feature of possibilistic logic is its ability to deal with inconsistency.  The level 
of inconsistency of a possibilistic logic base is defined as 

Inc(K) = max{α:K(⊥,α)} 

More generally, ( ) 0Inc =K  if an only if { : ( , ) }i i iP P α ∈K  is consistent in the classical sense. 
This would not be true in case iα  did represent a lower bound of the probability of iP  in a 
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probabilistically weighted logic.  The proposed system is sound and complete with respect to the 
inconsistency-tolerant semantics of possibilistic logic: 

K(F,α) if and only if K’ (F,α), for any formula F  

The resolution principle for possibilistic logic is given as below: 
(F1, α) (F2, β) ( 1 2( , )F FR , min(α,β)) 

where 1 2( , )F FR  is the standard classical logic resolvent.  The soundness of the rule can be 
established as follows.  Let K be a set of possibilistic clauses, and ( , )F α  a possibilistic clause 

obtained by a finite number of successive applications of the resolution rule to C; then 
( , )F αK ’ . 

Refutation can be easily extended to possibilistic logic.  Let K be a knowledge base made of 
possibilistic formulas, i.e., K = 1 1{( , ),..., ( , )}n nP Pα α .  Proving ( , )F α  from K amounts to adding 
( ,1)F¬ , put in clausal form, to K, and using the above rules repeatedly until getting 
K, ( ,1)F¬ (⊥,α).  We are interested here in getting the empty clause with the greatest possible 

weight.  It holds that K(F,α) if and only if KαF in the classical sense, where 
max{ : ( , ) and }F Fα β β α= ∈ ≥K K  . 

Triangular norm operation can be applied for information fusion under possibilistic logic.  To 
illustrate, consider the two possibilistic knowledge bases 1 1 1{( , ),..., ( , )}n nP Pα α=K  and 

2 1 1{( , ),..., ( , )}m mQ Qβ β=K .  Triangular norms are associative non decreasing symmetric 
operations tn such that (1, )tn α α=  and (0,0) 0tn = .  The main triangular norms are min, product 
and max(0, 1)α β+ − .  Let tnπ  be the result of the combination of 

1
π K  and 

2
π K . based on the 

triangular norm operation tn.  Then, tn is associated with the following possibilistic logic base: 

1 2 1 2{( , ( , )) : ( , ) ( , ) }tn i j i j i i j jF G ct F and Gα β α β= ∪ ∪ ∨ ∈ ∈K K K K K  

Note that if mintn =  then tnK  is semantically equivalent to 1 2∪K K . 

8.7 Dempster-Shafer Theory of Belief Functions 

The theory of belief functions (Shafer, 1976), also known as Dempster-Shafer theory, is a 
generalization of the Bayesian theory of subjective probability (mainly by virtue of its explicit 
definition of the concept of ignorance) to combine accumulative evidence or to change prior 
opinions in the light of new evidence.  Whereas the Bayesian theory requires probabilities for 
each question of interest, belief functions allow us to base degrees of belief for one question (for 
example, whether the game is on) on probabilities for a related question.  Arthur P. Dempster set 
out the basic ideas of the theory (Dempster, 1966) and then Glenn Shafer developed the theory 
further (Shafer, 1976).  Briefly, the theory may be summarized as follows. 
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Suppose expert X (for example, a weatherman, traffic cop, or grounds man) says that the 
game is not on due to heavy rain.  The decision maker’s subjective probabilities for expert X 
being reliable or unreliable are 0.7 and 0.3.  Now, expert X’s statement must be true if reliable, 
but not necessarily false if unreliable.  The expert’s testimony therefore justifies 0.7 “degrees of 
belief” that the game is not on, but only a zero (not 0.3) degree of belief that the game is on.  The 
numbers 0.7 and 0 together constitute a belief function.  

Suppose subjective probabilities were based on the decision maker’s knowledge of the 
frequency with which experts like X are reliable witnesses.  70% of statements made would be 
true by reliable witnesses, n% would be true by unreliable ones, and (30 )%n−  would be false 

statements by unreliable witnesses. 0.7 and 0 are the lower bounds of true probabilities 
(70 ) /100n+  and (30 ) /100n−  respectively.  Thus, a single belief function is always a consistent 

system of probability bounds, but may represent contradictory opinions from various experts.  
For example, consider the belief function 0.7 and 0 from expert X’s opinion of the game not 
being on, and 0.8 and 0 from expert Y’s opinion of the game being on.  The lower bound of the 
true probability for the game not being on in the first case is 0.7, but the upper bound is 0.2 in the 
second case, yielding contradiction. 

Let Ω  be a finite set of mutually exclusive and exhaustive propositions, called the frame-of-
discernment, about some problem domain ( { , }Cancelled CancelledΩ = ¬  in our example decision 
making problem) and ( )Π Ω  is be the power set of Ω . A basic probability assignment (BPA) or 

mass function is the mapping 
: ( ) [0,1]m Π Ω →  

which is used to quantify the belief committed to a particular subset A of the frame of 
discernment given certain evidence.  The probability number ( )m A , the mass of A, says how 

much belief there is that some member of A is in fact the case, where 
( ) 0m Φ =  and ( ) 1

A

m A
⊆Ω

=∑  

The value 0 indicates no belief and the value 1 indicates total belief, and any values between 
these two limits indicate partial beliefs.  If the probability number p for only a partial set A of 
hypotheses is known then the residual complementary probability number 1 p−  is assigned to the 

frame-of-discernment, thus allowing the representation of ignorance.  A basic probability 
assignment m is Bayesian if ( ) 0m A =  for every non-singleton set A.  For any set A ⊆ Ω  for 
which ( ) 0m A ≠ , A is called a focal element. 

The measure of total belief committed to A ⊆ Ω  can be obtained by computing the belief 
function Bel for A ⊆ Ω  which simply adds the mass of all the subsets of A: 
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( ) ( )
B A

Bel A m B
⊆

= ∑  

A single belief function represents the lower limit of the true probability and the following 
plausibility function provides the upper limit of the probability: 

( ) ( ) 1 ( )c

B A
Pl A m B Bel A

∩ ≠Φ

= = −∑  

Mass can be recovered from belief function as follows: 
| |( ) ( 1) ( )A B

A B
m B Bel A−

⊆

= −∑  

So there is a one-to-one correspondence between the two functions m and Bel.  Two 
independent evidences expressed as two basic probability assignments 1m  and 2m can be 
combined into a single joined basic assignment 1,2m  by Dempster’s rule of combination: 

1 2

1,2 1 2

( ) ( )

( ) 1 ( ) ( )

0

B C A

B C

m B m C
A

m A m B m C

A

∩ =

∩ =Φ

⎧
⎪ ≠ Φ⎪= −⎨
⎪
⎪ = Φ⎩

∑
∑  

8.8 Transferable Belief Model 

Transferable Belief Model (TBM) (Smets 1988; Smets and Kennes, 1994) describes a two-
level mental model in order to distinguish between two aspects of beliefs, belief as weighted 
opinions, and belief for decision making.  The two levels are: the credal level, where beliefs are 
entertained, and the pignistic level, where beliefs are used to make decisions (credal and pignistic 
derive from the Latin words “credo'”, I believe and “pignus”, a wage, a bet). 

Beliefs can be entertained outside any decision context.  TBM assumes that beliefs at the 
credal level are quantified by belief functions (Shafer 1976).  At the credal level beliefs are 
quantified by belief functions.  The credal level precedes the pignistic level in that at any time, 
beliefs are entertained (and revised) at the creedal level.  The pignistic level appears only when a 
decision needs to be made.  When a decision must be made, beliefs held at the credal level 
induce a probability measure at the pignistic level.  That probability measure is then used to 
compute the expected utilities.  To map belief functions onto probability functions, TBM uses a 
transformation that is called the pignistic transformation.  Note that Bayesian formalisms do not 
consider the credal level.  They usually argue that beliefs coexist with decisions. 

Smett’s pignistic transformation is as follows.  Let m be the basic belief assignment on a 
space Ω .  Then for every element w of Ω , the pignistic probability, denoted BetP to distinguish 
it from the subjective probability that would quantify the agent’s beliefs according to the 
Bayesians, is 
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:

( )( )
w w A

m ABetP w
A∈ ⊆Ω

= ∑  

where A  is the number of elements of Ω  in A.  If a person’s belief at the credal level is 

already represented by a probability function, then the pignistic transformation just amounts to 
the identify operator. 

8.9 Probability 

Probabilities are defined in terms of likely outcomes of random experiments. A repetitive 
process, observation, or operation that determines the results of any one of a number of possible 
outcomes is called a random experiment.  An event is an outcome of a random experiment.  The 
set of all possible outcomes of an experiment is called the sample space or event space. 

A probability  provides a quantitative description of the likely occurrence of a particular 
event.  The probability of an event x, denoted as ( )p x , is conventionally expressed on a scale 

from 0 to 1, inclusive. 

As defined above, an event consists of a single outcome in the sample space.  Let us 
generalize this definition by calling it an elementary (or simple event or atomic event), and by 
defining a compound event as an event that consists of multiple simple events.  In general, an 
event is either a simple event or a compound event.  Set theory can be used to represent various 
relationships among events.  In general, if x and y are two events (which may be either simple or 
compound) in the sample space S then: 

• x y∪  means either x or y occurs (or both occur) 

• x y∩  or xy means both x and y occur 

• x y⊆  means if x occurs then so does y 

• x  means event x does not occur (or equivalently, the complement of x occurs) 

• Φ  represents an impossible event  

• S is an event that is certain to occur  

Two events x and y are said to be mutually exclusive if x y∩ = Φ .  (The occurrence of both x 

and y is impossible, and therefore the two events are mutually exclusive.)  On the other hand, 
two events x and y are said to be independent if ( ) ( ) ( )p x y p x p y∩ = × .  As a result, when dealing 

with independent events x and y in an event space, the sets x and y must have a point (event) in 
common if both x and y have nonzero probabilities.  Mutually exclusive, non-impossible events x 
and y cannot be independent as x y∩ = Φ , so that ( ) 0p x y∩ = , but ( ) ( ) 0p x p y× ≠ . 

There are three approaches that provide guidelines on how to assign probability values: 
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• The classical approach 

• The relative frequency approach 

• The axiomatic approach 

In the classical approach, the probability of an event x in a finite sample space S is defined 
as follows: 

( )( )
( )

n xp x
n S

=  

where ( )n X  is the cardinality of the (finite) set X. Since x S⊆ , 0 ( ) 1p x≤ ≤  and ( ) 1p S = . 

In the relative frequency approach, the probability of an event x is defined as the ratio of the 
number (say, n) of outcomes or occurrences of x to the total number (say, N) of trials in a random 
experiment.  The choice of N depends on the particular experiment, but if an experiment is 
repeated at least N times without changing the experimental conditions, then the relative 
frequency of any particular event will (in theory) eventually settle down to some value.  The 
probability of the event can then be defined as the limiting value of the relative frequency:  

( ) lim
n

np x
N→∞

=  

where n is the number of occurrences of x and N is total number of trials.  For example, if a 
die is rolled many times then the relative frequency of the event “six” will settle down to a value 
of approximately 1/6.    

In the axiomatic approach, the concept of probability is axiomized as follows: 

• ( ) 0p x ≥ , where x is an arbitrary event 

• ( ) 1p S = , where S is a certain event, i.e. the whole event space 

• ( ) ( ) ( )p x y p x p y∪ = + , where x and y are mutually exclusive events. 

Note that while the axiomatic approach merely provides guidance on how to assign values to 
probabilities, the classical and relative frequency approaches specify what values to assign. 

A subjective probability describes an individual’s personal judgment about how likely a 
particular event is to occur.  It is not based on any precise computation, but is an assessment by a 
subject matter expert based on his or her experience (that is, it’s a “guesstimate”). 

Now we turn to formally defining random variables and probability distributions, the 
concepts central to the development of probabilistic models for decision-making.  A random 
variable is a function defined over an event space (that is, the domain of a random variable 
consists of random events from the sample space) and its value is determined by the outcome of 
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an event.  A discrete random variable is a random variable whose range is finite or denumerable.  
The elements in the range, i.e., possible values, of a random variable are called its states. 

The probability distribution of a random variable is a function whose domain is the range of 
the random variable, and whose range is a set of values associated with the probabilities of the 
elements of the domain.  The probability distribution of a discrete random variable is called a 
discrete probability distribution.  The probability distribution of a continuous random variable is 
called a continuous probability distribution.  In this book, we are mainly concerned about discrete 
probability distributions. 

The probability distribution of a discrete random variable is represented by its probability 
mass function (or probability density function or pdf).  A probability density function f of a 
random variable X with states 1{ ,..., }nx x  is defined as follows: ( )if x  is the probability that X will 
assume the value ix . 

The joint probability distribution of two discrete random variables X and Y, denoted as 
( , )p X Y  or ( )p XY , is a function whose domain is the set of ordered pairs ( , )x y  of events, where 

x and y are possible values for X and Y, respectively, and whose range is the set of probability 
values corresponding to the ordered pairs in its domain.  Such a probability is denoted by 

( , )p X x Y y= =  (or simply ( , )p x y  when X and Y are clear from the context) and is defined as 

( , ) ( , ) ( & )p x y p X x Y y p X x Y y= = = = = =  

The definition of the joint probability distribution can be extended to three or more random 
variables.  In general, the joint probability distribution of the set of discrete random variables 

1,..., nX X , denoted as 1( ,..., )np X X  or 1( ... )np X X , is given by 

1 1 1 1 1( ,..., ) ( ,..., ) ( &...& )n n n n np x x p X x X x p X x X x= = = = = =  

The notion of conditional probability distribution arises when you want to know the 
probability of an event, given the occurrence of another event.  For example, the probability of 
snowy weather later today given that the current temperature is freezing.  Formally, the 
conditional probability distribution of the two random variables X and Y, denoted as ( | )p X Y , is 
a function whose domain is the set of ordered pairs ( , )x y , where x and y are possible values for 

X and Y, respectively, and is a function whose range is the set of probability values 
corresponding to the ordered pairs.  The conditional probability distribution is defined as 
follows:  

( )( | )
( )

p XYp X Y
p Y

= , if ( ) 0p Y >  

In the Bayesian approach, the probability on a particular statement regarding random variable 
states is not based on any precise computation, but describes an individual’s personal judgment 
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about how likely a particular event is to occur based on experience.  The Bayesian approach is 
more general and expected to provide better results in practice than frequency probabilities alone 
because it incorporates subjective probability.  The Bayesian approach can therefore obtain 
different probabilities for any particular statement by incorporating prior information from 
experts.  The Bayesian approach is especially useful in situations where no historic data exists to 
compute prior probabilities. Bayes’ rule allows one to manipulate conditional probabilities as 
follows: 

( | ) ( )( | )
( )

p B A p Ap A B
p B

=  

This rule estimates the probability of A in light of the observation B.        Even if B did not 
happen, one can estimate the probability ( | )p A B  that takes into account the prior probability 

( )p A . 
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